logo

Überprüfen Sie, ob eine Zahl Palindrom ist

Schreiben Sie bei einer gegebenen positiven Ganzzahl eine Funktion, die „true“ zurückgibt, wenn die angegebene Zahl ein Palindrom ist, andernfalls „false“. Beispielsweise ist 12321 ein Palindrom, aber 1451 ist kein Palindrom.



Empfohlene Übung: Die Ziffernsumme ist Pallindrom oder nicht. Probieren Sie es aus!

Methode 1:

Sei die gegebene Zahl Auf eins . Eine einfache Methode für dieses Problem besteht darin, zunächst umgekehrte Ziffern von Auf eins , dann vergleiche die Umkehrung von Auf eins mit Auf eins . Wenn beide gleich sind, wird „true“ zurückgegeben, andernfalls „false“.

Im Folgenden finden Sie eine interessante Methode, die von Methode Nr. 2 von inspiriert ist Das Post. Die Idee ist, eine Kopie davon zu erstellen Auf eins und übergeben Sie die Kopie rekursiv als Referenz und übergeben Sie sie Auf eins nach Wert. Teilen Sie in den rekursiven Aufrufen Auf eins um 10, während Sie sich im Rekursionsbaum nach unten bewegen. Teilen Sie die Kopie durch 10, während Sie sich im Rekursionsbaum nach oben bewegen. Wenn sie sich in einer Funktion treffen, für die alle untergeordneten Aufrufe beendet sind, wird die letzte Ziffer von Auf eins ist die i-te Ziffer vom Anfang und die letzte Ziffer der Kopie ist die i-te Ziffer vom Ende.



C++






// A recursive C++ program to check> // whether a given number> // is palindrome or not> #include> using> namespace> std;> > // A function that returns true only> // if num contains one> // digit> int> oneDigit(>int> num)> {> > >// Comparison operation is faster> >// than division> >// operation. So using following> >// instead of 'return num> >// / 10 == 0;'> >return> (num>= 0 && num<10);> }> > // A recursive function to find> // out whether num is> // palindrome or not. Initially, dupNum> // contains address of> // a copy of num.> bool> isPalUtil(>int> num,>int>* dupNum)> {> > >// Base case (needed for recursion> >// termination): This> >// statement mainly compares the> >// first digit with the> >// last digit> >if> (oneDigit(num))> >return> (num == (*dupNum) % 10);> > >// This is the key line in this> >// method. Note that all> >// recursive calls have a separate> >// copy of num, but they> >// all share same copy of *dupNum.> >// We divide num while> >// moving up the recursion tree> >if> (!isPalUtil(num / 10, dupNum))> >return> false>;> > >// The following statements are> >// executed when we move up> >// the recursion call tree> >*dupNum /= 10;> > >// At this point, if num%10 contains> >// i'th digit from> >// beginning, then (*dupNum)%10> >// contains i'th digit> >// from end> >return> (num % 10 == (*dupNum) % 10);> }> > // The main function that uses> // recursive function> // isPalUtil() to find out whether> // num is palindrome or not> int> isPal(>int> num)> {> > >// Check if num is negative,> >// make it positive> >if> (num <0)> >num = -num;> > >// Create a separate copy of num,> >// so that modifications> >// made to address dupNum don't> >// change the input number.> >// *dupNum = num> >int>* dupNum =>new> int>(num);> > >return> isPalUtil(num, dupNum);> }> > // Driver program to test> // above functions> int> main()> {> >int> n = 12321;> >isPal(n) ? cout <<>'Yes '>: cout <<>'No'> << endl;> > >n = 12;> >isPal(n) ? cout <<>'Yes '>: cout <<>'No'> << endl;> > >n = 88;> >isPal(n) ? cout <<>'Yes '>: cout <<>'No'> << endl;> > >n = 8999;> >isPal(n) ? cout <<>'Yes '>: cout <<>'No'>;> >return> 0;> }> > // this code is contributed by shivanisinghss2110>

>

>

C




#include> #include> > // A function that returns true only> // if num contains one digit> int> oneDigit(>int> num)> {> >// Comparison operation is faster> >// than division operation.> >// So using the following instead of 'return num / 10 == 0;'> >return> (num>= 0 && num<10);> }> > // A recursive function to find out whether> // num is palindrome or not.> // Initially, dupNum contains the address of a copy of num.> bool> isPalUtil(>int> num,>int>* dupNum)> {> >// Base case (needed for recursion termination):> >// This statement mainly compares the first digit with the last digit.> >if> (oneDigit(num))> >return> (num == (*dupNum) % 10);> > >// This is the key line in this method.> >// Note that all recursive calls have a separate copy of num,> >// but they all share the same copy of *dupNum.> >// We divide num while moving up the recursion tree.> >if> (!isPalUtil(num / 10, dupNum))> >return> false>;> > >// The following statements are executed when we move up the recursion call tree.> >*dupNum /= 10;> > >// At this point, if num % 10 contains the i'th digit from the beginning,> >// then (*dupNum) % 10 contains the i'th digit from the end.> >return> (num % 10 == (*dupNum) % 10);> }> > // The main function that uses the recursive function> // isPalUtil() to find out whether num is palindrome or not.> bool> isPal(>int> num)> {> >// Check if num is negative, make it positive.> >if> (num <0)> >num = -num;> > >// Create a separate copy of num, so that modifications> >// made to the address dupNum don't change the input number.> >int> dupNum = num;> > >return> isPalUtil(num, &dupNum);> }> > // Driver program to test above functions> int> main()> {> >int> n = 12321;> >isPal(n) ?>printf>(>'Yes '>) :>printf>(>'No '>);> > >n = 12;> >isPal(n) ?>printf>(>'Yes '>) :>printf>(>'No '>);> > >n = 88;> >isPal(n) ?>printf>(>'Yes '>) :>printf>(>'No '>);> > >n = 8999;> >isPal(n) ?>printf>(>'Yes '>) :>printf>(>'No '>);> > >return> 0;> }>

Pandas loc
>

>

Java




// A recursive Java program to> // check whether a given number> // is palindrome or not> import> java.io.*;> import> java.util.*;> > public> class> CheckPalindromeNumberRecursion {> > >// A function that returns true> >// only if num contains one digit> >public> static> int> oneDigit(>int> num) {> > >if> ((num>=>0>) && (num <>10>))> >return> 1>;> >else> >return> 0>;> >}> > >public> static> int> isPalUtil> >(>int> num,>int> dupNum)>throws> Exception {> > >// base condition to return once we> >// move past first digit> >if> (num ==>0>) {> >return> dupNum;> >}>else> {> >dupNum = isPalUtil(num />10>, dupNum);> >}> > >// Check for equality of first digit of> >// num and dupNum> >if> (num %>10> == dupNum %>10>) {> >// if first digit values of num and> >// dupNum are equal divide dupNum> >// value by 10 to keep moving in sync> >// with num.> >return> dupNum />10>;> >}>else> {> >// At position values are not> >// matching throw exception and exit.> >// no need to proceed further.> >throw> new> Exception();> >}> > >}> > >public> static> int> isPal(>int> num)> >throws> Exception {> > >if> (num <>0>)> >num = (-num);> > >int> dupNum = (num);> > >return> isPalUtil(num, dupNum);> >}> > >public> static> void> main(String args[]) {> > >int> n =>12421>;> >try> {> >isPal(n);> >System.out.println(>'Yes'>);> >}>catch> (Exception e) {> >System.out.println(>'No'>);> >}> >n =>1231>;> >try> {> >isPal(n);> >System.out.println(>'Yes'>);> >}>catch> (Exception e) {> >System.out.println(>'No'>);> >}> > >n =>12>;> >try> {> >isPal(n);> >System.out.println(>'Yes'>);> >}>catch> (Exception e) {> >System.out.println(>'No'>);> >}> > >n =>88>;> >try> {> >isPal(n);> >System.out.println(>'Yes'>);> >}>catch> (Exception e) {> >System.out.println(>'No'>);> >}> > >n =>8999>;> >try> {> >isPal(n);> >System.out.println(>'Yes'>);> >}>catch> (Exception e) {> >System.out.println(>'No'>);> >}> >}> }> > // This code is contributed> // by Nasir J>

>

>

Python3




# A recursive Python3 program to check> # whether a given number is palindrome or not> > # A function that returns true> # only if num contains one digit> def> oneDigit(num):> > ># comparison operation is faster> ># than division operation. So> ># using following instead of> ># 'return num / 10 == 0;'> >return> ((num>>=> 0>)>and> >(num <>10>))> > # A recursive function to find> # out whether num is palindrome> # or not. Initially, dupNum> # contains address of a copy of num.> def> isPalUtil(num, dupNum):> > ># Base case (needed for recursion> ># termination): This statement> ># mainly compares the first digit> ># with the last digit> >if> oneDigit(num):> >return> (num>=>=> (dupNum[>0>])>%> 10>)> > ># This is the key line in this> ># method. Note that all recursive> ># calls have a separate copy of> ># num, but they all share same> ># copy of *dupNum. We divide num> ># while moving up the recursion tree> >if> not> isPalUtil(num>/>/>10>, dupNum):> >return> False> > ># The following statements are> ># executed when we move up the> ># recursion call tree> >dupNum[>0>]>=> dupNum[>0>]>/>/>10> > ># At this point, if num%10> ># contains i'th digit from> ># beginning, then (*dupNum)%10> ># contains i'th digit from end> >return> (num>%> 10> =>=> (dupNum[>0>])>%> 10>)> > # The main function that uses> # recursive function isPalUtil()> # to find out whether num is> # palindrome or not> def> isPal(num):> ># If num is negative,> ># make it positive> >if> (num <>0>):> >num>=> (>->num)> > ># Create a separate copy of> ># num, so that modifications> ># made to address dupNum> ># don't change the input number.> >dupNum>=> [num]># *dupNum = num> > >return> isPalUtil(num, dupNum)> > # Driver Code> n>=> 12321> if> isPal(n):> >print>(>'Yes'>)> else>:> >print>(>'No'>)> > n>=> 12> if> isPal(n) :> >print>(>'Yes'>)> else>:> >print>(>'No'>)> > n>=> 88> if> isPal(n) :> >print>(>'Yes'>)> else>:> >print>(>'No'>)> > n>=> 8999> if> isPal(n) :> >print>(>'Yes'>)> else>:> >print>(>'No'>)> > # This code is contributed by mits>

>

>

C#




// A recursive C# program to> // check whether a given number> // is palindrome or not> using> System;> > class> GFG> {> > // A function that returns true> // only if num contains one digit> public> static> int> oneDigit(>int> num)> {> >// comparison operation is> >// faster than division> >// operation. So using> >// following instead of> >// 'return num / 10 == 0;'> >if>((num>= 0) &&(Anzahl<10))> >return> 1;> >else> >return> 0;> }> > // A recursive function to> // find out whether num is> // palindrome or not.> // Initially, dupNum contains> // address of a copy of num.> public> static> int> isPalUtil(>int> num,> >int> dupNum)> {> >// Base case (needed for recursion> >// termination): This statement> >// mainly compares the first digit> >// with the last digit> >if> (oneDigit(num) == 1)> >if>(num == (dupNum) % 10)> >return> 1;> >else> >return> 0;> > >// This is the key line in> >// this method. Note that> >// all recursive calls have> >// a separate copy of num,> >// but they all share same> >// copy of *dupNum. We divide> >// num while moving up the> >// recursion tree> >if> (isPalUtil((>int>)(num / 10), dupNum) == 0)> >return> -1;> > >// The following statements> >// are executed when we move> >// up the recursion call tree> >dupNum = (>int>)(dupNum / 10);> > >// At this point, if num%10> >// contains i'th digit from> >// beginning, then (*dupNum)%10> >// contains i'th digit from end> >if>(num % 10 == (dupNum) % 10)> >return> 1;> >else> >return> 0;> }> > // The main function that uses> // recursive function isPalUtil()> // to find out whether num is> // palindrome or not> public> static> int> isPal(>int> num)> {> >// If num is negative,> >// make it positive> >if> (num <0)> >num = (-num);> > >// Create a separate copy> >// of num, so that modifications> >// made to address dupNum> >// don't change the input number.> >int> dupNum = (num);>// *dupNum = num> > >return> isPalUtil(num, dupNum);> }> > // Driver Code> public> static> void> Main()> {> int> n = 12321;> if>(isPal(n) == 0)> >Console.WriteLine(>'Yes'>);> else> >Console.WriteLine(>'No'>);> > n = 12;> if>(isPal(n) == 0)> >Console.WriteLine(>'Yes'>);> else> >Console.WriteLine(>'No'>);> > n = 88;> if>(isPal(n) == 1)> >Console.WriteLine(>'Yes'>);> else> >Console.WriteLine(>'No'>);> > n = 8999;> if>(isPal(n) == 0)> >Console.WriteLine(>'Yes'>);> else> >Console.WriteLine(>'No'>);> }> }> > // This code is contributed by mits>

>

>

Javascript




> // A recursive javascript program to> // check whether a given number> // is palindrome or not> > >// A function that returns true> >// only if num contains one digit> >function> oneDigit(num) {> > >if> ((num>= 0) && (Anz<10))> >return> 1;> >else> >return> 0;> >}> > >function> isPalUtil> >(num , dupNum) {> > >// base condition to return once we> >// move past first digit> >if> (num == 0) {> >return> dupNum;> >}>else> {> >dupNum = isPalUtil(parseInt(num / 10), dupNum);> >}> > >// Check for equality of first digit of> >// num and dupNum> >if> (num % 10 == dupNum % 10) {> >// if first digit values of num and> >// dupNum are equal divide dupNum> >// value by 10 to keep moving in sync> >// with num.> >return> parseInt(dupNum / 10);> >}>else> {> >// At position values are not> >// matching throw exception and exit.> >// no need to proceed further.> >throw> e;> >}> > >}> > >function> isPal(num)> >{> > >if> (num <0)> >num = (-num);> > >var> dupNum = (num);> > >return> isPalUtil(num, dupNum);> >}> > > > >var> n = 1242;> >try> {> >isPal(n);> >document.write(>' Yes'>);> >}>catch> (e) {> >document.write(>' No'>);> >}> >n = 1231;> >try> {> >isPal(n);> >document.write(>' Yes'>);> >}>catch> (e) {> >document.write(>' No'>);> >}> > >n = 12;> >try> {> >isPal(n);> >document.write(>' Yes'>);> >}>catch> (e) {> >document.write(>' No'>);> >}> > >n = 88;> >try> {> >isPal(n);> >document.write(>' Yes'>);> >}>catch> (e) {> >document.write(>' No'>);> >}> > >n = 8999;> >try> {> >isPal(n);> >document.write(>' Yes'>);> >}>catch> (e) {> >document.write(>' No'>);> >}> > // This code is contributed by Amit Katiyar> >

10 ml zu Unzen
>

>

PHP




// A recursive PHP program to // check whether a given number // is palindrome or not // A function that returns true // only if num contains one digit function oneDigit($num) { // comparison operation is faster // than division operation. So // using following instead of // 'return num / 10 == 0;' return (($num>= 0) && ($num<10)); } // A recursive function to find // out whether num is palindrome // or not. Initially, dupNum // contains address of a copy of num. function isPalUtil($num, $dupNum) { // Base case (needed for recursion // termination): This statement // mainly compares the first digit // with the last digit if (oneDigit($num)) return ($num == ($dupNum) % 10); // This is the key line in this // method. Note that all recursive // calls have a separate copy of // num, but they all share same // copy of *dupNum. We divide num // while moving up the recursion tree if (!isPalUtil((int)($num / 10), $dupNum)) return -1; // The following statements are // executed when we move up the // recursion call tree $dupNum = (int)($dupNum / 10); // At this point, if num%10 // contains i'th digit from // beginning, then (*dupNum)%10 // contains i'th digit from end return ($num % 10 == ($dupNum) % 10); } // The main function that uses // recursive function isPalUtil() // to find out whether num is // palindrome or not function isPal($num) { // If num is negative, // make it positive if ($num <0) $num = (-$num); // Create a separate copy of // num, so that modifications // made to address dupNum // don't change the input number. $dupNum = ($num); // *dupNum = num return isPalUtil($num, $dupNum); } // Driver Code $n = 12321; if(isPal($n) == 0) echo 'Yes '; else echo 'No '; $n = 12; if(isPal($n) == 0) echo 'Yes '; else echo 'No '; $n = 88; if(isPal($n) == 1) echo 'Yes '; else echo 'No '; $n = 8999; if(isPal($n) == 0) echo 'Yes '; else echo 'No '; // This code is contributed by m_kit ?>>

>

>

Ausgabe

Yes No Yes No>

Zeitkomplexität: O(log n)
Hilfsraum: O(log n)

Das Überprüfen einer Zahl ist Palindrom oder nicht, ohne zusätzlichen Leerraum zu verwenden
Methode 2: Verwendung der string()-Methode

  • Wenn die Anzahl der Ziffern dieser Zahl 10 überschreitet18, können wir diese Zahl nicht als ganze Zahl annehmen, da der Bereich von long long int die gegebene Zahl nicht erfüllt.
  • Nehmen Sie also die Eingabe als Zeichenfolge, führen Sie eine Schleife vom Anfang bis zur Länge/2 aus und überprüfen Sie das erste Zeichen (numerisch) bis zum letzten Zeichen der Zeichenfolge und das vorletzte bis vorletzte usw. … Wenn ein Zeichen nicht übereinstimmt, wird die Zeichenfolge angezeigt wäre kein Palindrom.

Nachfolgend finden Sie die Umsetzung des oben genannten Ansatzes

C++14




// C++ implementation of the above approach> #include> using> namespace> std;> > // Function to check palindrome> int> checkPalindrome(string str)> {> >// Calculating string length> >int> len = str.length();> > >// Traversing through the string> >// upto half its length> >for> (>int> i = 0; i // Comparing i th character // from starting and len-i // th character from end if (str[i] != str[len - i - 1]) return false; } // If the above loop doesn't return then it is // palindrome return true; } // Driver Code int main() { // taking number as string string st = '112233445566778899000000998877665544332211'; if (checkPalindrome(st) == true) cout << 'Yes'; else cout << 'No'; return 0; } // this code is written by vikkycirus>

>

>

Java




// Java implementation of the above approach> import> java.io.*;> > class> GFG{> > // Function to check palindrome> static> boolean> checkPalindrome(String str)> {> > >// Calculating string length> >int> len = str.length();> > >// Traversing through the string> >// upto half its length> >for>(>int> i =>0>; i 2; i++) { // Comparing i th character // from starting and len-i // th character from end if (str.charAt(i) != str.charAt(len - i - 1)) return false; } // If the above loop doesn't return then // it is palindrome return true; } // Driver Code public static void main(String[] args) { // Taking number as string String st = '112233445566778899000000998877665544332211'; if (checkPalindrome(st) == true) System.out.print('Yes'); else System.out.print('No'); } } // This code is contributed by subhammahato348>

>

>

Python3




# Python3 implementation of the above approach> > # function to check palindrome> def> checkPalindrome(>str>):> > ># Run loop from 0 to len/2> >for> i>in> range>(>0>,>len>(>str>)>/>/>2>):> >if> str>[i] !>=> str>[>len>(>str>)>->i>->1>]:> >return> False> > ># If the above loop doesn't> >#return then it is palindrome> >return> True> > > # Driver code> st>=> '112233445566778899000000998877665544332211'> if>(checkPalindrome(st)>=>=> True>):> >print>(>'it is a palindrome'>)> else>:> >print>(>'It is not a palindrome'>)>

>

>

C#




Java-Iterator für Karte
// C# implementation of the above approach> using> System;> > class> GFG{> > // Function to check palindrome> static> bool> checkPalindrome(>string> str)> {> > >// Calculating string length> >int> len = str.Length;> > >// Traversing through the string> >// upto half its length> >for>(>int> i = 0; i { // Comparing i th character // from starting and len-i // th character from end if (str[i] != str[len - i - 1]) return false; } // If the above loop doesn't return then // it is palindrome return true; } // Driver Code public static void Main() { // Taking number as string string st = '112233445566778899000000998877665544332211'; if (checkPalindrome(st) == true) Console.Write('Yes'); else Console.Write('No'); } } // This code is contributed by subhammahato348>

>

>

Javascript




> > // Javascript implementation of the above approach> > // Function to check palindrome> function> checkPalindrome(str)> {> >// Calculating string length> >var> len = str.length;> > >// Traversing through the string> >// upto half its length> >for> (>var> i = 0; i // Comparing ith character // from starting and len-ith // character from end if (str[i] != str[len - i - 1]) return false; } // If the above loop doesn't return then it is // palindrome return true; } // Driver Code // taking number as string let st = '112233445566778899000000998877665544332211'; if (checkPalindrome(st) == true) document.write('Yes'); else document.write('No'); // This code is contributed by Mayank Tyagi>

>

>

Ausgabe

Yes>

Zeitkomplexität: O(|str|)
Hilfsraum : O(1)

Methode 3:

Hier ist der einfachste Ansatz, um zu überprüfen, ob eine Zahl Palindrom ist oder nicht. Dieser Ansatz kann verwendet werden, wenn die Anzahl der Ziffern in der gegebenen Zahl weniger als 10^18 beträgt, denn wenn die Anzahl der Ziffern dieser Zahl 10^18 überschreitet, können wir diese Zahl nicht als ganze Zahl annehmen, da der Bereich lang lang ist int erfüllt die angegebene Zahl nicht.

Um zu überprüfen, ob die angegebene Zahl ein Palindrom ist oder nicht, kehren wir einfach die Ziffern der angegebenen Zahl um und prüfen, ob die Umkehrung dieser Zahl mit der ursprünglichen Zahl übereinstimmt oder nicht. Wenn die Umkehrung der Zahl dieser Zahl entspricht, handelt es sich bei der Zahl um ein Palindrom, andernfalls handelt es sich nicht um ein Palindrom.

C++




// C++ program to check if a number is Palindrome> #include> using> namespace> std;> // Function to check Palindrome> bool> checkPalindrome(>int> n)> {> >int> reverse = 0;> >int> temp = n;> >while> (temp != 0) {> >reverse = (reverse * 10) + (temp % 10);> >temp = temp / 10;> >}> >return> (reverse> >== n);>// if it is true then it will return 1;> >// else if false it will return 0;> }> int> main()> {> >int> n = 7007;> >if> (checkPalindrome(n) == 1) {> >cout <<>'Yes '>;> >}> >else> {> >cout <<>'No '>;> >}> >return> 0;> }> // This code is contributed by Suruchi Kumari>

>

>

Java




/*package whatever //do not write package name here */> > import> java.io.*;> > class> GFG {> >// Java program to check if a number is Palindrome> > >// Function to check Palindrome> >static> boolean> checkPalindrome(>int> n)> >{> >int> reverse =>0>;> >int> temp = n;> >while> (temp !=>0>) {> >reverse = (reverse *>10>) + (temp %>10>);> >temp = temp />10>;> >}> >return> (reverse == n);>// if it is true then it will return 1;> >// else if false it will return 0;> >}> > >// Driver Code> >public> static> void> main(String args[])> >{> >int> n =>7007>;> >if> (checkPalindrome(n) ==>true>) {> >System.out.println(>'Yes'>);> >}> >else> {> >System.out.println(>'No'>);> >}> >}> }> > // This code is contributed by shinjanpatra>

>

>

Python3




# Python3 program to check if a number is Palindrome> > # Function to check Palindrome> def> checkPalindrome(n):> > >reverse>=> 0> >temp>=> n> >while> (temp !>=> 0>):> >reverse>=> (reverse>*> 10>)>+> (temp>%> 10>)> >temp>=> temp>/>/> 10> > >return> (reverse>=>=> n)># if it is true then it will return 1;> ># else if false it will return 0;> > # driver code> n>=> 7007> if> (checkPalindrome(n)>=>=> 1>):> >print>(>'Yes'>)> > else>:> >print>(>'No'>)> > # This code is contributed by shinjanpatra>

>

>

C#




// C# program to check if a number is Palindrome> > using> System;> > class> GFG {> > >// Function to check Palindrome> >static> bool> checkPalindrome(>int> n)> >{> >int> reverse = 0;> >int> temp = n;> >while> (temp != 0) {> >reverse = (reverse * 10) + (temp % 10);> >temp = temp / 10;> >}> >return> (> >reverse> >== n);>// if it is true then it will return 1;> >// else if false it will return 0;> >}> > >// Driver Code> >public> static> void> Main(>string>[] args)> >{> >int> n = 7007;> >if> (checkPalindrome(n) ==>true>) {> >Console.WriteLine(>'Yes'>);> >}> >else> {> >Console.WriteLine(>'No'>);> >}> >}> }> > // This code is contributed by phasing17>

>

>

Javascript




Java-Auswahlsortierung
> > // JavaScript program to check if a number is Palindrome> > // Function to check Palindrome> function> checkPalindrome(n)> {> >let reverse = 0;> >let temp = n;> >while> (temp != 0) {> >reverse = (reverse * 10) + (temp % 10);> >temp = Math.floor(temp / 10);> >}> >return> (reverse == n);>// if it is true then it will return 1;> >// else if false it will return 0;> }> > // driver code> > let n = 7007;> if> (checkPalindrome(n) == 1) {> >document.write(>'Yes'>,>''>);> }> else> {> >document.write(>'No'>,>''>);> }> > > // This code is contributed by shinjanpatra> > >

>

>

Ausgabe

Yes>

Zeitkomplexität: O(log10(n)) oder O(Anzahl der Ziffern in einer gegebenen Zahl)
Hilfsraum : O(1) oder konstant

Dieser Artikel wurde zusammengestellt vonAashish Barnwal.