logo

Sammle alle Münzen in der minimalen Anzahl von Schritten

Dazu gibt es viele Münzstapel, die nebeneinander angeordnet sind. Wir müssen alle diese Münzen in der minimalen Anzahl von Schritten sammeln, wobei wir in einem Schritt eine horizontale Münzreihe oder eine vertikale Münzreihe sammeln können und die gesammelten Münzen kontinuierlich sein sollten.
Beispiele:  
 

  Input :   height[] = [2 1 2 5 1] Each value of this array corresponds to the height of stack that is we are given five stack of coins where in first stack 2 coins are there then in second stack 1 coin is there and so on.   Output :   4 We can collect all above coins in 4 steps which are shown in below diagram. Each step is shown by different color. First we have collected last horizontal line of coins after which stacks remains as [1 0 1 4 0] after that another horizontal line of coins is collected from stack 3 and 4 then a vertical line from stack 4 and at the end a horizontal line from stack 1. Total steps are 4.


 

Java-Operatoren


Wir können dieses Problem mit der Divide-and-Conquer-Methode lösen. Wir sehen, dass es immer von Vorteil ist, horizontale Linien von unten zu entfernen. Angenommen, wir arbeiten in einem Rekursionsschritt an Stapeln vom l-Index bis zum r-Index. Jedes Mal, wenn wir die Mindesthöhe wählen, entfernen wir diese vielen horizontalen Linien. Danach wird der Stapel in zwei Teile l bis Minimum und Minimum +1 bis r aufgeteilt und wir rufen diese Unterarrays rekursiv auf. Eine andere Sache ist, dass wir Münzen auch mithilfe vertikaler Linien sammeln können, sodass wir das Minimum zwischen dem Ergebnis rekursiver Aufrufe und (r – l) wählen, da wir mithilfe vertikaler Linien (r – l) immer alle Münzen sammeln können. 
Da wir jedes Mal jedes Subarray aufrufen und das Minimum dieser gesamten Zeitkomplexität der Lösung finden, wird O(N) sein2
 



C++
// C++ program to find minimum number of // steps to collect stack of coins #include    using namespace std; // recursive method to collect coins from // height array l to r with height h already // collected int minStepsRecur(int height[] int l int r int h) {  // if l is more than r no steps needed  if (l >= r)  return 0;  // loop over heights to get minimum height  // index  int m = l;  for (int i = l; i < r; i++)  if (height[i] < height[m])  m = i;  /* choose minimum from  1) collecting coins using all vertical  lines (total r - l)  2) collecting coins using lower horizontal  lines and recursively on left and right  segments */  return min(r - l  minStepsRecur(height l m height[m]) +   minStepsRecur(height m + 1 r height[m]) +   height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array int minSteps(int height[] int N) {  return minStepsRecur(height 0 N 0); } // Driver code to test above methods int main() {  int height[] = { 2 1 2 5 1 };  int N = sizeof(height) / sizeof(int);  cout << minSteps(height N) << endl;  return 0; } 
Java
// Java Code to Collect all coins in // minimum number of steps import java.util.*; class GFG {  // recursive method to collect coins from  // height array l to r with height h already  // collected  public static int minStepsRecur(int height[] int l  int r int h)  {  // if l is more than r no steps needed  if (l >= r)  return 0;  // loop over heights to get minimum height  // index  int m = l;  for (int i = l; i < r; i++)  if (height[i] < height[m])  m = i;  /* choose minimum from  1) collecting coins using all vertical  lines (total r - l)  2) collecting coins using lower horizontal  lines and recursively on left and right  segments */  return Math.min(r - l  minStepsRecur(height l m height[m]) +   minStepsRecur(height m + 1 r height[m]) +  height[m] - h);  }  // method returns minimum number of step to  // collect coin from stack with height in  // height[] array  public static int minSteps(int height[] int N)  {  return minStepsRecur(height 0 N 0);  }  /* Driver program to test above function */  public static void main(String[] args)  {  int height[] = { 2 1 2 5 1 };  int N = height.length;  System.out.println(minSteps(height N));  } } // This code is contributed by Arnav Kr. Mandal. 
Python 3
# Python 3 program to find  # minimum number of steps  # to collect stack of coins # recursive method to collect  # coins from height array l to  # r with height h already # collected def minStepsRecur(height l r h): # if l is more than r # no steps needed if l >= r: return 0; # loop over heights to  # get minimum height index m = l for i in range(l r): if height[i] < height[m]: m = i # choose minimum from # 1) collecting coins using  # all vertical lines (total r - l) # 2) collecting coins using  # lower horizontal lines and  # recursively on left and  # right segments  return min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h) # method returns minimum number # of step to collect coin from  # stack with height in height[] array def minSteps(height N): return minStepsRecur(height 0 N 0) # Driver code  height = [ 2 1 2 5 1 ] N = len(height) print(minSteps(height N)) # This code is contributed # by ChitraNayal 
C#
// C# Code to Collect all coins in // minimum number of steps using System; class GFG {  // recursive method to collect coins from  // height array l to r with height h already  // collected  public static int minStepsRecur(int[] height int l  int r int h)  {  // if l is more than r no steps needed  if (l >= r)  return 0;  // loop over heights to  // get minimum height index  int m = l;  for (int i = l; i < r; i++)  if (height[i] < height[m])  m = i;  /* choose minimum from  1) collecting coins using all vertical  lines (total r - l)  2) collecting coins using lower horizontal  lines and recursively on left and right  segments */  return Math.Min(r - l  minStepsRecur(height l m height[m]) +   minStepsRecur(height m + 1 r height[m]) +  height[m] - h);  }  // method returns minimum number of step to  // collect coin from stack with height in  // height[] array  public static int minSteps(int[] height int N)  {  return minStepsRecur(height 0 N 0);  }  /* Driver program to test above function */  public static void Main()  {  int[] height = { 2 1 2 5 1 };  int N = height.Length;  Console.Write(minSteps(height N));  } } // This code is contributed by nitin mittal 
PHP
 // PHP program to find minimum number of // steps to collect stack of coins // recursive method to collect // coins from height array l to  // r with height h already // collected function minStepsRecur($height $l $r $h) { // if l is more than r // no steps needed if ($l >= $r) return 0; // loop over heights to // get minimum height // index $m = $l; for ($i = $l; $i < $r; $i++) if ($height[$i] < $height[$m]) $m = $i; /* choose minimum from  1) collecting coins using   all vertical lines   (total r - l)  2) collecting coins using   lower horizontal lines   and recursively on left  and right segments */ return min($r - $l minStepsRecur($height $l $m $height[$m]) + minStepsRecur($height $m + 1 $r $height[$m]) + $height[$m] - $h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array function minSteps($height $N) { return minStepsRecur($height 0 $N 0); } // Driver Code $height = array(2 1 2 5 1); $N = sizeof($height); echo minSteps($height $N) ; // This code is contributed by nitin mittal. ?> 
JavaScript
<script> // Javascript Code to Collect all coins in // minimum number of steps    // recursive method to collect coins from  // height array l to r with height h already  // collected  function minStepsRecur(heightlrh)  {  // if l is more than r no steps needed  if (l >= r)  return 0;    // loop over heights to get minimum height  // index  let m = l;  for (let i = l; i < r; i++)  if (height[i] < height[m])  m = i;    /* choose minimum from  1) collecting coins using all vertical  lines (total r - l)  2) collecting coins using lower horizontal  lines and recursively on left and right  segments */  return Math.min(r - l  minStepsRecur(height l m height[m]) +   minStepsRecur(height m + 1 r height[m]) +  height[m] - h);  }    // method returns minimum number of step to  // collect coin from stack with height in  // height[] array  function minSteps(heightN)  {  return minStepsRecur(height 0 N 0);  }    /* Driver program to test above function */  let height=[2 1 2 5 1 ];  let N = height.length;  document.write(minSteps(height N));    // This code is contributed by avanitrachhadiya2155 </script> 

Ausgabe:  
 

4

Zeitkomplexität: Die zeitliche Komplexität dieses Algorithmus beträgt O(N^2), wobei N die Anzahl der Elemente im Höhenarray ist.

Raumkomplexität: Die räumliche Komplexität dieses Algorithmus beträgt O(N), da rekursive Aufrufe für das Höhenarray durchgeführt werden.


 

Quiz erstellen