Gegeben ein BST ( B inär S schau T ree), das möglicherweise unausgeglichen ist, wandeln Sie es in ein ausgeglichenes BST um, das die minimal mögliche Höhe hat.
Beispiele:
Input: 30 / 20 / 10 Output: 20 / 10 30 Input: 4 / 3 / 2 / 1 Output: 3 3 2 / / / 1 4 OR 2 4 OR 1 3 OR .. / 2 1 4 Input: 4 / 3 5 / 2 6 / 1 7 Output: 4 / 2 6 / / 1 3 5 7>Empfohlen: Üben Sie normale BST zu ausgeglichener BST. Probieren Sie es aus!
A Einfache Lösung besteht darin, Knoten in Inorder zu durchlaufen und einen nach dem anderen in einen selbstausgleichenden BST-ähnlichen AVL-Baum einzufügen. Die zeitliche Komplexität dieser Lösung beträgt O(n Log n) und diese Lösung garantiert nicht die minimal mögliche Höhe, wie sie im schlimmsten Fall die Höhe des AVL-Baums sein kann 1,44*log 2 N .
Ein Effiziente Lösung kann darin bestehen, in O(n)-Zeit einen ausgeglichenen BST mit minimal möglicher Höhe zu konstruieren. Nachfolgend finden Sie die Schritte.
- Durchlaufen Sie die angegebene BST in der Reihenfolge und speichern Sie das Ergebnis in einem Array. Dieser Schritt dauert O(n) Zeit. Beachten Sie, dass dieses Array sortiert wird, da das Durchlaufen von BST in der Reihenfolge immer eine sortierte Reihenfolge erzeugt.
- Erstellen Sie mithilfe des besprochenen rekursiven Ansatzes ein ausgeglichenes BST aus dem oben erstellten sortierten Array Hier . Auch dieser Schritt benötigt O(n) Zeit, da wir jedes Element genau einmal durchlaufen und die Verarbeitung eines Elements O(1) Zeit benötigt.
Nachfolgend finden Sie die Umsetzung der oben genannten Schritte.
C++
// C++ program to convert a left unbalanced BST to> // a balanced BST> #include> using> namespace> std;> struct> Node> {> >int> data;> >Node* left, *right;> };> /* This function traverse the skewed binary tree and> >stores its nodes pointers in vector nodes[] */> void> storeBSTNodes(Node* root, vector &nodes)> {> >// Base case> >if> (root==NULL)> >return>;> >// Store nodes in Inorder (which is sorted> >// order for BST)> >storeBSTNodes(root->links, Knoten);> >nodes.push_back(root);> >storeBSTNodes(root->rechts, Knoten);> }> /* Recursive function to construct binary tree */> Node* buildTreeUtil(vector &nodes,>int> start,> >int> end)> {> >// base case> >if> (start>Ende)> >return> NULL;> >/* Get the middle element and make it root */> >int> mid = (start + end)/2;> >Node *root = nodes[mid];> >/* Using index in Inorder traversal, construct> >left and right subtress */> >root->left = buildTreeUtil(nodes, start, mid-1);> >root->right = buildTreeUtil(nodes, mid+1, end);> >return> root;> }> // This functions converts an unbalanced BST to> // a balanced BST> Node* buildTree(Node* root)> {> >// Store nodes of given BST in sorted order> >vector nodes;> >storeBSTNodes(root, nodes);> >// Constructs BST from nodes[]> >int> n = nodes.size();> >return> buildTreeUtil(nodes, 0, n-1);> }> // Utility function to create a new node> Node* newNode(>int> data)> {> >Node* node =>new> Node;> >node->data = data;> >node->left = node->right = NULL;> >return> (node);> }> /* Function to do preorder traversal of tree */> void> preOrder(Node* node)> {> >if> (node == NULL)> >return>;> >printf>(>'%d '>, node->Daten);> >preOrder(node->links);> >preOrder(node->rechts);> }> // Driver program> int> main()> {> >/* Constructed skewed binary tree is> >10> >/> >8> >/> >7> >/> >6> >/> >5 */> >Node* root = newNode(10);> >root->left = newNode(8);> >root->left->left = newNode(7);> >root->left->left->left = newNode(6);> >root->left->left->left->left = newNode(5);> >root = buildTree(root);> >printf>(>'Preorder traversal of balanced '> >'BST is :
'>);> >preOrder(root);> >return> 0;> }> |
>
Berechnung der Amtszeit in Excel
>
Java
Segmentierungsfehler-Kern gelöscht
// Java program to convert a left unbalanced BST to a balanced BST> import> java.util.*;> /* A binary tree node has data, pointer to left child> >and a pointer to right child */> class> Node> {> >int> data;> >Node left, right;> >public> Node(>int> data)> >{> >this>.data = data;> >left = right =>null>;> >}> }> class> BinaryTree> {> >Node root;> >/* This function traverse the skewed binary tree and> >stores its nodes pointers in vector nodes[] */> >void> storeBSTNodes(Node root, Vector nodes)> >{> >// Base case> >if> (root ==>null>)> >return>;> >// Store nodes in Inorder (which is sorted> >// order for BST)> >storeBSTNodes(root.left, nodes);> >nodes.add(root);> >storeBSTNodes(root.right, nodes);> >}> >/* Recursive function to construct binary tree */> >Node buildTreeUtil(Vector nodes,>int> start,> >int> end)> >{> >// base case> >if> (start>Ende)> >return> null>;> >/* Get the middle element and make it root */> >int> mid = (start + end) />2>;> >Node node = nodes.get(mid);> >/* Using index in Inorder traversal, construct> >left and right subtress */> >node.left = buildTreeUtil(nodes, start, mid ->1>);> >node.right = buildTreeUtil(nodes, mid +>1>, end);> >return> node;> >}> >// This functions converts an unbalanced BST to> >// a balanced BST> >Node buildTree(Node root)> >{> >// Store nodes of given BST in sorted order> >Vector nodes =>new> Vector();> >storeBSTNodes(root, nodes);> >// Constructs BST from nodes[]> >int> n = nodes.size();> >return> buildTreeUtil(nodes,>0>, n ->1>);> >}> >/* Function to do preorder traversal of tree */> >void> preOrder(Node node)> >{> >if> (node ==>null>)> >return>;> >System.out.print(node.data +>' '>);> >preOrder(node.left);> >preOrder(node.right);> >}> >// Driver program to test the above functions> >public> static> void> main(String[] args)> >{> >/* Constructed skewed binary tree is> >10> >/> >8> >/> >7> >/> >6> >/> >5 */> >BinaryTree tree =>new> BinaryTree();> >tree.root =>new> Node(>10>);> >tree.root.left =>new> Node(>8>);> >tree.root.left.left =>new> Node(>7>);> >tree.root.left.left.left =>new> Node(>6>);> >tree.root.left.left.left.left =>new> Node(>5>);> >tree.root = tree.buildTree(tree.root);> >System.out.println(>'Preorder traversal of balanced BST is :'>);> >tree.preOrder(tree.root);> >}> }> // This code has been contributed by Mayank Jaiswal(mayank_24)> |
>
>
Python3
# Python3 program to convert a left> # unbalanced BST to a balanced BST> import> sys> import> math> # A binary tree node has data, pointer to left child> # and a pointer to right child> class> Node:> >def> __init__(>self>,data):> >self>.data>=>data> >self>.left>=>None> >self>.right>=>None> # This function traverse the skewed binary tree and> # stores its nodes pointers in vector nodes[]> def> storeBSTNodes(root,nodes):> > ># Base case> >if> not> root:> >return> > ># Store nodes in Inorder (which is sorted> ># order for BST)> >storeBSTNodes(root.left,nodes)> >nodes.append(root)> >storeBSTNodes(root.right,nodes)> # Recursive function to construct binary tree> def> buildTreeUtil(nodes,start,end):> > ># base case> >if> start>Ende:> >return> None> ># Get the middle element and make it root> >mid>=>(start>+>end)>/>/>2> >node>=>nodes[mid]> ># Using index in Inorder traversal, construct> ># left and right subtress> >node.left>=>buildTreeUtil(nodes,start,mid>->1>)> >node.right>=>buildTreeUtil(nodes,mid>+>1>,end)> >return> node> # This functions converts an unbalanced BST to> # a balanced BST> def> buildTree(root):> > ># Store nodes of given BST in sorted order> >nodes>=>[]> >storeBSTNodes(root,nodes)> ># Constructs BST from nodes[]> >n>=>len>(nodes)> >return> buildTreeUtil(nodes,>0>,n>->1>)> # Function to do preorder traversal of tree> def> preOrder(root):> >if> not> root:> >return> >print>(>'{} '>.>format>(root.data),end>=>'')> >preOrder(root.left)> >preOrder(root.right)> # Driver code> if> __name__>=>=>'__main__'>:> ># Constructed skewed binary tree is> ># 10> ># /> ># 8> ># /> ># 7> ># /> ># 6> ># /> ># 5> >root>=> Node(>10>)> >root.left>=> Node(>8>)> >root.left.left>=> Node(>7>)> >root.left.left.left>=> Node(>6>)> >root.left.left.left.left>=> Node(>5>)> >root>=> buildTree(root)> >print>(>'Preorder traversal of balanced BST is :'>)> >preOrder(root)> > # This code has been contributed by Vikash Kumar 37> |
wie man einen String in eine Ganzzahl umwandelt
>
>
C#
using> System;> using> System.Collections.Generic;> // C# program to convert a left unbalanced BST to a balanced BST> /* A binary tree node has data, pointer to left child> >and a pointer to right child */> public> class> Node> {> >public> int> data;> >public> Node left, right;> >public> Node(>int> data)> >{> >this>.data = data;> >left = right =>null>;> >}> }> public> class> BinaryTree> {> >public> Node root;> >/* This function traverse the skewed binary tree and> >stores its nodes pointers in vector nodes[] */> >public> virtual> void> storeBSTNodes(Node root, List nodes)> >{> >// Base case> >if> (root ==>null>)> >{> >return>;> >}> >// Store nodes in Inorder (which is sorted> >// order for BST)> >storeBSTNodes(root.left, nodes);> >nodes.Add(root);> >storeBSTNodes(root.right, nodes);> >}> >/* Recursive function to construct binary tree */> >public> virtual> Node buildTreeUtil(List nodes,>int> start,>int> end)> >{> >// base case> >if> (start>Ende)> >{> >return> null>;> >}> >/* Get the middle element and make it root */> >int> mid = (start + end) / 2;> >Node node = nodes[mid];> >/* Using index in Inorder traversal, construct> >left and right subtress */> >node.left = buildTreeUtil(nodes, start, mid - 1);> >node.right = buildTreeUtil(nodes, mid + 1, end);> >return> node;> >}> >// This functions converts an unbalanced BST to> >// a balanced BST> >public> virtual> Node buildTree(Node root)> >{> >// Store nodes of given BST in sorted order> >List nodes =>new> List();> >storeBSTNodes(root, nodes);> >// Constructs BST from nodes[]> >int> n = nodes.Count;> >return> buildTreeUtil(nodes, 0, n - 1);> >}> >/* Function to do preorder traversal of tree */> >public> virtual> void> preOrder(Node node)> >{> >if> (node ==>null>)> >{> >return>;> >}> >Console.Write(node.data +>' '>);> >preOrder(node.left);> >preOrder(node.right);> >}> >// Driver program to test the above functions> >public> static> void> Main(>string>[] args)> >{> >/* Constructed skewed binary tree is> >10> >/> >8> >/> >7> >/> >6> >/> >5 */> >BinaryTree tree =>new> BinaryTree();> >tree.root =>new> Node(10);> >tree.root.left =>new> Node(8);> >tree.root.left.left =>new> Node(7);> >tree.root.left.left.left =>new> Node(6);> >tree.root.left.left.left.left =>new> Node(5);> >tree.root = tree.buildTree(tree.root);> >Console.WriteLine(>'Preorder traversal of balanced BST is :'>);> >tree.preOrder(tree.root);> >}> }> >// This code is contributed by Shrikant13> |
>
>
Javascript
Java-Listen
> >// JavaScript program to convert a left> >// unbalanced BST to a balanced BST> > >class Node> >{> >constructor(data) {> >this>.left =>null>;> >this>.right =>null>;> >this>.data = data;> >}> >}> > >let root;> > >/* This function traverse the skewed binary tree and> >stores its nodes pointers in vector nodes[] */> >function> storeBSTNodes(root, nodes)> >{> >// Base case> >if> (root ==>null>)> >return>;> > >// Store nodes in Inorder (which is sorted> >// order for BST)> >storeBSTNodes(root.left, nodes);> >nodes.push(root);> >storeBSTNodes(root.right, nodes);> >}> > >/* Recursive function to construct binary tree */> >function> buildTreeUtil(nodes, start, end)> >{> >// base case> >if> (start>Ende)> >return> null>;> > >/* Get the middle element and make it root */> >let mid = parseInt((start + end) / 2, 10);> >let node = nodes[mid];> > >/* Using index in Inorder traversal, construct> >left and right subtress */> >node.left = buildTreeUtil(nodes, start, mid - 1);> >node.right = buildTreeUtil(nodes, mid + 1, end);> > >return> node;> >}> > >// This functions converts an unbalanced BST to> >// a balanced BST> >function> buildTree(root)> >{> >// Store nodes of given BST in sorted order> >let nodes = [];> >storeBSTNodes(root, nodes);> > >// Constructs BST from nodes[]> >let n = nodes.length;> >return> buildTreeUtil(nodes, 0, n - 1);> >}> > >/* Function to do preorder traversal of tree */> >function> preOrder(node)> >{> >if> (node ==>null>)> >return>;> >document.write(node.data +>' '>);> >preOrder(node.left);> >preOrder(node.right);> >}> > >/* Constructed skewed binary tree is> >10> >/> >8> >/> >7> >/> >6> >/> >5 */> >root =>new> Node(10);> >root.left =>new> Node(8);> >root.left.left =>new> Node(7);> >root.left.left.left =>new> Node(6);> >root.left.left.left.left =>new> Node(5);> >root = buildTree(root);> >document.write(>'Preorder traversal of balanced BST is :'> +>''>);> >preOrder(root);> > > |
>
>Ausgabe
Preorder traversal of balanced BST is : 7 5 6 8 10>
Zeitkomplexität: O(n), Da wir den Baum nur zweimal durchlaufen. Einmal beim Durchlaufen in der Reihenfolge und dann beim Aufbau des ausgeglichenen Baums.
Nebenraum: O(n), Der zusätzliche Platz wird verwendet, um die Knoten der Inorder-Durchquerung im Vektor zu speichern. Außerdem beträgt der zusätzliche Platz, den der Rekursionsaufrufstapel einnimmt, O(h), wobei h die Höhe des Baums ist.
Dieser Artikel wurde beigesteuert Aditya Goel . Wenn Ihnen techcodeview.com gefällt und Sie einen Beitrag leisten möchten, können Sie auch einen Artikel schreiben und Ihren Artikel per E-Mail an [email protected] senden