Wir haben einen Kreis mit Mittelpunkt im Ursprung (0 0). Als Eingabe erhalten wir den Startwinkel des Kreissektors und die Größe des Kreissektors in Prozent.
Beispiele:
Input : Radius = 8 StartAngle = 0 Percentage = 12 x = 3 y = 4 Output : Point (3 4) exists in the circle sector Input : Radius = 12 Startangle = 45 Percentage = 25 x = 3 y = 4 Output : Point (3 4) does not exist in the circle sector
Quelle: Wikibook.org
In diesem Bild beträgt der Startwinkel den Radius r von 0 Grad. Nehmen wir an, dass der Prozentsatz der farbigen Fläche 12 % beträgt, dann berechnen wir den Endwinkel als 360/Prozent + Startwinkel .
Um herauszufinden, ob ein Punkt (x y) in einem Kreissektor (zentriert im Ursprung) existiert oder nicht, ermitteln wir die Polarkoordinaten dieses Punktes und führen dann die folgenden Schritte durch:
- Konvertieren Sie damit xy in Polarkoordinaten
Winkel = Abwesenheit(y/x); Radius = sqrt(x * y y y y y); - Dann muss der Winkel zwischen StartingAngle und EndingAngle liegen und der Radius zwischen 0 und Ihrem Radius.
// C++ program to check if a point lies inside a circle // sector. #include using namespace std; void checkPoint(int radius int x int y float percent float startAngle) { // calculate endAngle float endAngle = 360/percent + startAngle; // Calculate polar co-ordinates float polarradius = sqrt(x*x+y*y); float Angle = atan(y/x); // Check whether polarradius is less then radius of circle // or not and Angle is between startAngle and endAngle // or not if (Angle>=startAngle && Angle<=endAngle && polarradius<radius) printf('Point (%d %d) exist in the circle sectorn' x y); else printf('Point (%d %d) does not exist in the circle sectorn' x y); } // Driver code int main() { int radius = 8 x = 3 y = 4; float percent = 12 startAngle = 0; checkPoint(radius x y percent startAngle); return 0; }
Java // Java program to check if // a point lies inside a circle // sector. class GFG { static void checkPoint(int radius int x int y float percent float startAngle) { // calculate endAngle float endAngle = 360/percent + startAngle; // Calculate polar co-ordinates double polarradius = Math.sqrt(x*x+y*y); double Angle = Math.atan(y/x); // Check whether polarradius is // less then radius of circle // or not and Angle is between // startAngle and endAngle // or not if (Angle>=startAngle && Angle<=endAngle && polarradius<radius) System.out.print('Point'+'('+x+''+y+')'+ ' exist in the circle sectorn'); else System.out.print('Point'+'('+x+''+y+')'+ ' exist in the circle sectorn'); } // Driver Program to test above function public static void main(String arg[]) { int radius = 8 x = 3 y = 4; float percent = 12 startAngle = 0; checkPoint(radius x y percent startAngle); } } // This code is contributed // by Anant Agarwal.
Python3 # Python3 program to check if a point # lies inside a circle sector. import math def checkPoint(radius x y percent startAngle): # calculate endAngle endAngle = 360 / percent + startAngle # Calculate polar co-ordinates polarradius = math.sqrt(x * x + y * y) Angle = math.atan(y / x) # Check whether polarradius is less # then radius of circle or not and # Angle is between startAngle and # endAngle or not if (Angle >= startAngle and Angle <= endAngle and polarradius < radius): print('Point (' x '' y ') ' 'exist in the circle sector') else: print('Point (' x '' y ') ' 'does not exist in the circle sector') # Driver code radius x y = 8 3 4 percent startAngle = 12 0 checkPoint(radius x y percent startAngle) # This code is contributed by # Smitha Dinesh Semwal
C# // C# program to check if a point lies // inside a circle sector. using System.IO; using System; class GFG { static void checkPoint(int radius int x int y float percent float startAngle) { // calculate endAngle float endAngle = 360 / percent + startAngle; // Calculate polar co-ordinates float polarradius = (float)Math.Sqrt(x * x + y * y); float Angle = (float)Math.Atan(y / x); // Check whether polarradius is less then // radius of circle or not and Angle is // between startAngle and endAngle or not if (Angle >= startAngle && Angle <= endAngle && polarradius < radius) Console.Write('Point ({0} {1}) exist in ' + 'the circle sector' x y); else Console.Write('Point ({0} {1}) does not ' + 'exist in the circle sector' x y); } // Driver code public static void Main() { int radius = 8 x = 3 y = 4; float percent = 12 startAngle = 0; checkPoint(radius x y percent startAngle); } } // This code is contributed by Smitha Dinesh Semwal
JavaScript <script> // Javascript program to check if // a point lies inside a circle // sector. function checkPoint(radius x y percent startAngle) { // Calculate endAngle let endAngle = 360 / percent + startAngle; // Calculate polar co-ordinates let polarradius = Math.sqrt(x * x + y * y); let Angle = Math.atan(y / x); // Check whether polarradius is // less then radius of circle // or not and Angle is between // startAngle and endAngle // or not if (Angle >= startAngle && Angle <= endAngle && polarradius < radius) document.write('Point' + '(' + x + '' + y + ')' + ' exist in the circle sectorn'); else document.write('Point' + '(' + x + '' + y + ')' + ' exist in the circle sectorn'); } // Driver code let radius = 8 x = 3 y = 4; let percent = 12 startAngle = 0; checkPoint(radius x y percent startAngle); // This code is contributed by splevel62 </script>
Ausgabe :
Point(3 4) exists in the circle sector
Zeitkomplexität: O(1)
Hilfsraum: O(1)