logo

MIN -Haufen in maximale Haufen umwandeln

Bei einer Array -Darstellung von Min Heap konvertieren Sie sie in maximale Haufen.

Beispiele:  

Eingang: arr [] = {3 5 9 6 8 20 10 12 18 9}



Sortieren einer Arrayliste Java

               3
            /    
          5 9
        //  
      6 8 20 10
    / / / /
12 18 9 

Ausgabe: arr [] = {20 18 10 12 9 9 3 5 6 8}

           20
         /    
      18 10
     //  
  12 9 3
 / / / /
5 6 8 

Fakultät in c

Eingang: arr [] = {3 4 8 11 13}
Ausgabe:  arr [] = {13 11 8 4 3} 

Die Idee ist einfach, maximaler Haufen zu erstellen, ohne sich um die Eingabe zu kümmern. Beginnen Sie vom untersten und rechts den internen Knoten von Min-HEAP und höfen Sie alle internen Knoten auf der unteren Art und Weise, um den maximalen Haufen zu erstellen.

Befolgen Sie die angegebenen Schritte, um das Problem zu lösen:

  • Rufen Sie die Heapify-Funktion vom rechten internen Knoten von Min-heap auf
  • Häateln Sie alle internen Knoten auf die Bottom-up-Art, um maximale Haufen zu erstellen
  • Drucken Sie den Max-heap

Algorithmus: Hier ist ein Algorithmus zum Umwandeln eines Min -Haufens in einen maximalen Haufen :

  1. Beginnen Sie am letzten Nicht-Blattknoten des Haufens (d. H. Der Elternteil des letzten Blattknotens). Für einen binären Haufen befindet sich dieser Knoten am Indexboden ((n - 1)/2), wobei n die Anzahl der Knoten im Haufen ist.
  2. Für jeden Nicht-Blattknoten führen a "heapifizieren" Betrieb zur Behebung der Heap -Eigenschaft. In einem min -Haufen beinhaltet bei dieser Operation die Überprüfung, ob der Wert des Knotens größer ist als der seiner Kinder und ob der Knoten mit dem kleineren seiner Kinder ausgetauscht wird. In einem maximalen Haufen beinhaltet die Operation die Überprüfung, ob der Wert des Knotens geringer ist als der seiner Kinder und ob der Knoten mit dem größeren seiner Kinder tauschte.
  3. Wiederholen Sie Schritt 2 für jeden der nicht-blattknoten, die sich auf dem Haufen hinaufarbeiten. Wenn Sie die Wurzel des Haufens erreichen, sollte der gesamte Haufen jetzt ein maximaler Haufen sein.

Nachfolgend finden Sie die Implementierung des obigen Ansatzes:

Gigabyte vs. Megabyte
C++
// A C++ program to convert min Heap to max Heap #include    using namespace std; // to heapify a subtree with root at given index void MaxHeapify(int arr[] int i int N) {  int l = 2 * i + 1;  int r = 2 * i + 2;  int largest = i;  if (l < N && arr[l] > arr[i])  largest = l;  if (r < N && arr[r] > arr[largest])  largest = r;  if (largest != i) {  swap(arr[i] arr[largest]);  MaxHeapify(arr largest N);  } } // This function basically builds max heap void convertMaxHeap(int arr[] int N) {  // Start from bottommost and rightmost  // internal node and heapify all internal  // nodes in bottom up way  for (int i = (N - 2) / 2; i >= 0; --i)  MaxHeapify(arr i N); } // A utility function to print a given array // of given size void printArray(int* arr int size) {  for (int i = 0; i < size; ++i)  cout << arr[i] << ' '; } // Driver's code int main() {  // array representing Min Heap  int arr[] = { 3 5 9 6 8 20 10 12 18 9 };  int N = sizeof(arr) / sizeof(arr[0]);  printf('Min Heap array : ');  printArray(arr N);  // Function call  convertMaxHeap(arr N);  printf('nMax Heap array : ');  printArray(arr N);  return 0; } 
C
// C program to convert min Heap to max Heap #include  void swap(int* a int* b) {  int temp = *a;  *a = *b;  *b = temp; } // to heapify a subtree with root at given index void MaxHeapify(int arr[] int i int N) {  int l = 2 * i + 1;  int r = 2 * i + 2;  int largest = i;  if (l < N && arr[l] > arr[i])  largest = l;  if (r < N && arr[r] > arr[largest])  largest = r;  if (largest != i) {  swap(&arr[i] &arr[largest]);  MaxHeapify(arr largest N);  } } // This function basically builds max heap void convertMaxHeap(int arr[] int N) {  // Start from bottommost and rightmost  // internal node and heapify all internal  // nodes in bottom up way  for (int i = (N - 2) / 2; i >= 0; --i)  MaxHeapify(arr i N); } // A utility function to print a given array // of given size void printArray(int* arr int size) {  for (int i = 0; i < size; ++i)  printf('%d ' arr[i]); } // Driver's code int main() {  // array representing Min Heap  int arr[] = { 3 5 9 6 8 20 10 12 18 9 };  int N = sizeof(arr) / sizeof(arr[0]);  printf('Min Heap array : ');  printArray(arr N);  // Function call  convertMaxHeap(arr N);  printf('nMax Heap array : ');  printArray(arr N);  return 0; } 
Java
// Java program to convert min Heap to max Heap class GFG {  // To heapify a subtree with root at given index  static void MaxHeapify(int arr[] int i int N)  {  int l = 2 * i + 1;  int r = 2 * i + 2;  int largest = i;  if (l < N && arr[l] > arr[i])  largest = l;  if (r < N && arr[r] > arr[largest])  largest = r;  if (largest != i) {  // swap arr[i] and arr[largest]  int temp = arr[i];  arr[i] = arr[largest];  arr[largest] = temp;  MaxHeapify(arr largest N);  }  }  // This function basically builds max heap  static void convertMaxHeap(int arr[] int N)  {  // Start from bottommost and rightmost  // internal node and heapify all internal  // nodes in bottom up way  for (int i = (N - 2) / 2; i >= 0; --i)  MaxHeapify(arr i N);  }  // A utility function to print a given array  // of given size  static void printArray(int arr[] int size)  {  for (int i = 0; i < size; ++i)  System.out.print(arr[i] + ' ');  }  // driver's code  public static void main(String[] args)  {  // array representing Min Heap  int arr[] = { 3 5 9 6 8 20 10 12 18 9 };  int N = arr.length;  System.out.print('Min Heap array : ');  printArray(arr N);  // Function call  convertMaxHeap(arr N);  System.out.print('nMax Heap array : ');  printArray(arr N);  } } // Contributed by Pramod Kumar 
Python3
# A Python3 program to convert min Heap # to max Heap # to heapify a subtree with root # at given index def MaxHeapify(arr i N): l = 2 * i + 1 r = 2 * i + 2 largest = i if l < N and arr[l] > arr[i]: largest = l if r < N and arr[r] > arr[largest]: largest = r if largest != i: arr[i] arr[largest] = arr[largest] arr[i] MaxHeapify(arr largest N) # This function basically builds max heap def convertMaxHeap(arr N): # Start from bottommost and rightmost # internal node and heapify all # internal nodes in bottom up way for i in range(int((N - 2) / 2) -1 -1): MaxHeapify(arr i N) # A utility function to print a # given array of given size def printArray(arr size): for i in range(size): print(arr[i] end=' ') print() # Driver Code if __name__ == '__main__': # array representing Min Heap arr = [3 5 9 6 8 20 10 12 18 9] N = len(arr) print('Min Heap array : ') printArray(arr N) # Function call convertMaxHeap(arr N) print('Max Heap array : ') printArray(arr N) # This code is contributed by PranchalK 
C#
// C# program to convert // min Heap to max Heap using System; class GFG {  // To heapify a subtree with  // root at given index  static void MaxHeapify(int[] arr int i int n)  {  int l = 2 * i + 1;  int r = 2 * i + 2;  int largest = i;  if (l < n && arr[l] > arr[i])  largest = l;  if (r < n && arr[r] > arr[largest])  largest = r;  if (largest != i) {  // swap arr[i] and arr[largest]  int temp = arr[i];  arr[i] = arr[largest];  arr[largest] = temp;  MaxHeapify(arr largest n);  }  }  // This function basically  // builds max heap  static void convertMaxHeap(int[] arr int n)  {  // Start from bottommost and  // rightmost internal node and  // heapify all internal nodes  // in bottom up way  for (int i = (n - 2) / 2; i >= 0; --i)  MaxHeapify(arr i n);  }  // A utility function to print  // a given array of given size  static void printArray(int[] arr int size)  {  for (int i = 0; i < size; ++i)  Console.Write(arr[i] + ' ');  }  // Driver's Code  public static void Main()  {  // array representing Min Heap  int[] arr = { 3 5 9 6 8 20 10 12 18 9 };  int n = arr.Length;  Console.Write('Min Heap array : ');  printArray(arr n);  // Function call  convertMaxHeap(arr n);  Console.Write('nMax Heap array : ');  printArray(arr n);  } } // This code is contributed by nitin mittal. 
JavaScript
<script> // javascript program to convert min Heap to max Heap  // To heapify a subtree with root at given index function MaxHeapify(arr  i  n) {  var l = 2*i + 1;  var r = 2*i + 2;  var largest = i;  if (l < n && arr[l] > arr[i])  largest = l;  if (r < n && arr[r] > arr[largest])  largest = r;  if (largest != i)  {  // swap arr[i] and arr[largest]  var temp = arr[i];  arr[i] = arr[largest];  arr[largest] = temp;  MaxHeapify(arr largest n);  } } // This function basically builds max heap function convertMaxHeap(arr  n) {  // Start from bottommost and rightmost  // internal node and heapify all internal  // nodes in bottom up way  for (i = (n-2)/2; i >= 0; --i)  MaxHeapify(arr i n); } // A utility function to print a given array // of given size function printArray(arr  size) {  for (i = 0; i < size; ++i)  document.write(arr[i]+' '); } // driver program // array representing Min Heap var arr = [3 5 9 6 8 20 10 12 18 9]; var n = arr.length; document.write('Min Heap array : '); printArray(arr n); convertMaxHeap(arr n); document.write('  
Max Heap array : '
); printArray(arr n); // This code is contributed by 29AjayKumar </script>
PHP
 // A PHP program to convert min Heap to max Heap // utility swap function function swap(&$a&$b) { $tmp=$a; $a=$b; $b=$tmp; } // to heapify a subtree with root at given index function MaxHeapify(&$arr $i $n) { $l = 2*$i + 1; $r = 2*$i + 2; $largest = $i; if ($l < $n && $arr[$l] > $arr[$i]) $largest = $l; if ($r < $n && $arr[$r] > $arr[$largest]) $largest = $r; if ($largest != $i) { swap($arr[$i] $arr[$largest]); MaxHeapify($arr $largest $n); } } // This function basically builds max heap function convertMaxHeap(&$arr $n) { // Start from bottommost and rightmost // internal node and heapify all internal // nodes in bottom up way for ($i = (int)(($n-2)/2); $i >= 0; --$i) MaxHeapify($arr $i $n); } // A utility function to print a given array // of given size function printArray($arr $size) { for ($i = 0; $i <$size; ++$i) print($arr[$i].' '); } // Driver code // array representing Min Heap $arr = array(3 5 9 6 8 20 10 12 18 9); $n = count($arr); print('Min Heap array : '); printArray($arr $n); convertMaxHeap($arr $n); print('nMax Heap array : '); printArray($arr $n); // This code is contributed by mits ?> 

Ausgabe
Min Heap array : 3 5 9 6 8 20 10 12 18 9 Max Heap array : 20 18 10 12 9 9 3 5 6 8 

Zeitkomplexität: O (n) Weitere Informationen finden Sie unter: Zeitkomplexität des Aufbaus eines Haufens
Hilfsraum: An)