Gegeben sei eine Matrix A der Größe NxN Wir müssen die Anzahl der darin enthaltenen Inversionspaare ermitteln. Die Inversionsanzahl in einer Matrix ist definiert als die Anzahl der Paare, die die folgenden Bedingungen erfüllen:
- X1? X2
- Und1? Und2
- Axt2][Und2]< A[x1][Und1]
Einschränkungen:
- 1 ? Aij? 109
- 1 ? N ? 103
Beispiele:
For simplicity let's take a 2x2 matrix : A = {{7 5} {3 1}}; The inversion pairs are : (7 5) (3 1) (7 3) (5 1) and (7 1) Output : 5 Um dieses Problem zu lösen, müssen wir Folgendes wissen:
- Ermitteln der Anzahl von Inversionspaaren in einem 1D-Array mithilfe des Binary Indexed Tree (BIT) https://www.geeksforgeeks.org/dsa/inversion-count-in-array-using-bit/
- 2D-BIT https://www.geeksforgeeks.org/dsa/two-dimensional-binary-indexed-tree-or-fenwick-tree/
Da wir die Anzahl der Inversionspaare in einer Matrix ermitteln müssen, müssen wir zunächst die Elemente der Matrix in einem anderen Array, beispielsweise v, speichern und das Array v sortieren, damit wir die Elemente der unsortierten Matrix mit v vergleichen und die Anzahl der Inversionspaare mithilfe von BIT ermitteln können. Es wird jedoch vorausgesetzt, dass die Werte der Elemente sehr groß sind (109), sodass wir die Werte der Elemente in der Matrix nicht als Indizes im BIT verwenden können. Daher müssen wir die Position der Elemente als Indizes im 2D-BIT verwenden.
Wir werden das Tupel (-A[i][j] i j) für jedes Element der Matrix verwenden und es in einem Array speichern, sagen wir „v“. Dann müssen wir v nach dem Wert von -A[i][j] in aufsteigender Reihenfolge sortieren, sodass das größte Element der Matrix am Index 0 und das kleinste am letzten Index von v gespeichert wird. Jetzt reduziert sich das Problem darauf, Inversionspaare in einem 1D-Array zu finden. Die einzige Ausnahme besteht darin, dass wir ein 2D-BIT verwenden werden.
Beachten Sie, dass wir hier negative Werte von A[i][j] verwenden, einfach weil wir v von links nach rechts durchlaufen, d. h. von der größten Zahl in der Matrix zur kleinsten (weil wir das tun, wenn wir Inversionspaare in einem 1D-Array mit BIT finden). Man kann auch positive Werte verwenden und v von rechts nach links durchlaufen, sodass das Endergebnis gleich bleibt.
Algorithmus:
1. Initialize inv_pair_cnt = 0 which will store the number of inversion pairs. 2. Store the tuple (-A[i][j] i j) in an array say v where A[i][j] is the element of the matrix A at position (i j). 3. Sort the array v according to the first element of the tuple i.e. according to the value of -A[i][j]. 4. Traverse the array v and do the following : - Initialize an array say 'pairs' to store the position (i j) of the tuples of v. - while the current tuple of v and all its adjacent tuples whose first value i.e. -A[i][j] is same do - Push the current tuple's position pair (i j) into 'pairs'. - Add to inv_pair_cnt the number of elements which are less than the current element(i.e. A[i][j]) and lie on the right side in the sorted array v by calling the query operation of BIT and passing i and j as arguments. - For each position pair (i j) stored in the array 'pairs' update the position (i j) in the 2D BIT by 1. 5. Finally inv_pair_cnt will contain the number of inversion pairs.
Durchführung:
C++// C++ program to count the number of inversion // pairs in a 2D matrix #include using namespace std; // for simplicity we are taking N as 4 #define N 4 void update(int l int r int val int bit[][N + 1]) { for (int i = l; i <= N; i += i & -i) for (int j = r; j <= N; j += j & -j) bit[i][j] += val; } // function to find cumulative sum upto // index (l r) in the 2D BIT long long query(int l int r int bit[][N + 1]) { long long ret = 0; for (int i = l; i > 0; i -= i & -i) for (int j = r; j > 0; j -= j & -j) ret += bit[i][j]; return ret; } // function to count and return the number // of inversion pairs in the matrix long long countInversionPairs(int mat[][N]) { // the 2D bit array and initialize it with 0. int bit[N+1][N+1] = {0}; // v will store the tuple (-mat[i][j] i j) vector<pair<int pair<int int> > > v; // store the tuples in the vector v for (int i = 0; i < N; ++i) for (int j = 0; j < N; ++j) v.push_back(make_pair(-mat[i][j] make_pair(i+1 j+1))); sort(v.begin() v.end()); // inv_pair_cnt will store the number of // inversion pairs long long inv_pair_cnt = 0; // traverse all the tuples of vector v int i = 0; while (i < v.size()) { int curr = i; vector<pair<int int> > pairs; while (curr < v.size() && (v[curr].first == v[i].first)) { // push the position of the current element in 'pairs' pairs.push_back(make_pair(v[curr].second.first v[curr].second.second)); inv_pair_cnt += query(v[curr].second.first v[curr].second.second bit); curr++; } vector<pair<int int> >::iterator it; // traverse the 'pairs' vector for (it = pairs.begin(); it != pairs.end(); ++it) { int x = it->first; int y = it->second; // update the position (x y) by 1 update(x y 1 bit); } i = curr; } return inv_pair_cnt; } // Driver program int main() { int mat[N][N] = { { 4 7 2 9 } { 6 4 1 7 } { 5 3 8 1 } { 3 2 5 6 } }; long long inv_pair_cnt = countInversionPairs(mat); cout << 'The number of inversion pairs are : ' << inv_pair_cnt << endl; return 0; }
Python3 # Python3 program to count the number of inversion # pairs in a 2D matrix # for simplicity we are taking N as 4 N = 4 # Function to update a 2D BIT. It updates the # value of bit[l][r] by adding val to bit[l][r] def update(l r val bit): i = l while(i <= N): j = r while(j <= N): bit[i][j] += val j += j & -j i += i & -i # function to find cumulative sum upto # index (l r) in the 2D BIT def query(l r bit): ret = 0 i = l while(i > 0): j = r while(j > 0): ret += bit[i][j] j -= j & -j i -= i & -i return ret # function to count and return the number # of inversion pairs in the matrix def countInversionPairs(mat): # the 2D bit array and initialize it with 0. bit = [[0 for i in range(N + 1)] for j in range(N + 1)] # v will store the tuple (-mat[i][j] i j) v = [] # store the tuples in the vector v for i in range(N): for j in range(N): # Note that we are not using the pair # (0 0) because BIT update and query # operations are not done on index 0 v.append([-mat[i][j] [i + 1 j + 1]]) # sort the vector v according to the # first element of the tuple i.e. -mat[i][j] v.sort() # inv_pair_cnt will store the number of # inversion pairs inv_pair_cnt = 0 # traverse all the tuples of vector v i = 0 while (i < len(v)): curr = i # 'pairs' will store the position of each element # i.e. the pair (i j) of each tuple of the vector v pairs = [] # consider the current tuple in v and all its # adjacent tuples whose first value i.e. the # value of –mat[i][j] is same while (curr < len(v) and (v[curr][0] == v[i][0])): # push the position of the current element in 'pairs' pairs.append([v[curr][1][0] v[curr][1][1]]) # add the number of elements which are # less than the current element and lie on the right # side in the vector v inv_pair_cnt += query(v[curr][1][0] v[curr][1][1] bit) curr += 1 # traverse the 'pairs' vector for it in pairs: x = it[0] y = it[1] # update the position (x y) by 1 update(x y 1 bit) i = curr return inv_pair_cnt # Driver code mat = [[4 7 2 9 ][ 6 4 1 7 ] [ 5 3 8 1 ][3 2 5 6]] inv_pair_cnt = countInversionPairs(mat) print('The number of inversion pairs are :' inv_pair_cnt) # This code is contributed by shubhamsingh10
C# // C# program to count the number of inversion // Tuples in a 2D matrix using System; using System.Collections.Generic; class GFG { // for simplicity we are taking N as 4 static int N = 4; // Function to update a 2D BIT. It updates the // value of bit[l r] by adding val to bit[l r] static void update(int l int r int val int[] bit) { for (int x = l; x <= N; x += (x & -x)) for (int j = r; j <= N; j += j & -j) bit[x j] += val; } // function to find cumulative sum upto // index (l r) in the 2D BIT static int query(int l int r int[] bit) { int ret = 0; for (int x = l; x > 0; x -= (x & -x)) for (int j = r; j > 0; j -= (j & -j)) ret += bit[x j]; return ret; } // function to count and return the number // of inversion Tuples in the matrix static int countInversionTuples(int[] mat) { // the 2D bit array and initialize it with 0. int[ ] bit = new int[N + 1 N +1]; for (int x = 0; x <= N; x++) for (int y = 0; y <= N; y++) bit[x y] = 0; // v will store the tuple (-mat[i j] i j) List<Tuple<int Tuple<int int> > > v = new List<Tuple<int Tuple<int int> > >(); // store the tuples in the vector v for (int x = 0; x < N; ++x) for (int j = 0; j < N; ++j) // Note that we are not using the Tuple // (0 0) because BIT update and query // operations are not done on index 0 v.Add(Tuple.Create(-mat[x j] Tuple.Create(x+1 j+1))); // sort the vector v according to the // first element of the tuple i.e. -mat[i j] v.Sort(); // inv_Tuple_cnt will store the number of // inversion Tuples int inv_Tuple_cnt = 0; // traverse all the tuples of vector v int i = 0; while (i < v.Count) { int curr = i; // 'Tuples' will store the position of each element // i.e. the Tuple (i j) of each tuple of the vector v List<Tuple<int int>> Tuples = new List<Tuple<int int>>(); // consider the current tuple in v and all its // adjacent tuples whose first value i.e. the // value of –mat[i j] is same while (curr < v.Count && (v[curr].Item1 == v[i].Item1)) { // push the position of the current element in 'Tuples' Tuples.Add(Tuple.Create(v[curr].Item2.Item1 v[curr].Item2.Item2)); // add the number of elements which are // less than the current element and lie on the right // side in the vector v inv_Tuple_cnt += query(v[curr].Item2.Item1 v[curr].Item2.Item2 bit); curr++; } // traverse the 'Tuples' vector foreach (var it in Tuples) { int x = it.Item1; int y = it.Item2; // update the position (x y) by 1 update(x y 1 bit); } i = curr; } return inv_Tuple_cnt; } // Driver program public static void Main(string[] args) { int[ ] mat = { { 4 7 2 9 } { 6 4 1 7 } { 5 3 8 1 } { 3 2 5 6 } }; int inv_Tuple_cnt = countInversionTuples(mat); Console.WriteLine( 'The number of inversion Tuples are : ' + inv_Tuple_cnt); } } // This code is contributed by phasing17.
JavaScript // JavaScript program to count the number of inversion // pairs in a 2D matrix // for simplicity we are taking N as 4 let N = 4 // Function to update a 2D BIT. It updates the // value of bit[l][r] by adding val to bit[l][r] function update(l r val bit) { let i = l while(i <= N) { let j = r while(j <= N) { bit[i][j] += val j += (j & -j) } i += (i & -i) } return bit } // function to find cumulative sum upto // index (l r) in the 2D BIT function query(l r bit) { let ret = 0 let i = l while(i > 0) { let j = r while(j > 0) { ret += bit[i][j] j -= (j & -j) } i -= (i & -i) } return ret } // function to count and return the number // of inversion pairs in the matrix function countInversionPairs(mat) { // the 2D bit array and initialize it with 0. let bit = new Array(N + 1) for (let i = 0; i <= N; i++) bit[i] = new Array(N + 1).fill(0) // v will store the tuple (-mat[i][j] i j) let v = [] // store the tuples in the vector v for (let i = 0; i < N; i++) for (var j = 0; j < N; j++) // Note that we are not using the pair // (0 0) because BIT update and query // operations are not done on index 0 v.push([-mat[i][j] [i + 1 j + 1]]) // sort the vector v according to the // first element of the tuple i.e. -mat[i][j] v.sort(function(a b) { return a[0] - b[0]}) // inv_pair_cnt will store the number of // inversion pairs let inv_pair_cnt = 0 // traverse all the tuples of vector v let i = 0 while (i < v.length) { let curr = i // 'pairs' will store the position of each element // i.e. the pair (i j) of each tuple of the vector v let pairs = [] // consider the current tuple in v and all its // adjacent tuples whose first value i.e. the // value of –mat[i][j] is same while (curr < v.length && (v[curr][0] == v[i][0])) { // push the position of the current element in 'pairs' pairs.push([v[curr][1][0] v[curr][1][1]]) // add the number of elements which are // less than the current element and lie on the right // side in the vector v inv_pair_cnt += query(v[curr][1][0] v[curr][1][1] bit) curr += 1 } // traverse the 'pairs' vector for (let it of pairs) { let x = it[0] let y = it[1] // update the position (x y) by 1 bit = update(x y 1 bit) } i = curr } return inv_pair_cnt } // Driver code let mat = [[4 7 2 9 ][ 6 4 1 7 ] [ 5 3 8 1 ][3 2 5 6]] let inv_pair_cnt = countInversionPairs(mat) console.log('The number of inversion pairs are ' inv_pair_cnt) // This code is contributed by phasing17
Java import java.util.*; class Main { static final int N = 4; static void update(int l int r int val int[][] bit) { for (int i = l; i <= N; i += i & -i) for (int j = r; j <= N; j += j & -j) bit[i][j] += val; } static long query(int l int r int[][] bit) { long ret = 0; for (int i = l; i > 0; i -= i & -i) for (int j = r; j > 0; j -= j & -j) ret += bit[i][j]; return ret; } static long countInversionPairs(int[][] mat) { int[][] bit = new int[N + 1][N + 1]; List<AbstractMap.SimpleEntry<Integer AbstractMap.SimpleEntry<Integer Integer>>> v = new ArrayList<>(); for (int i = 0; i < N; ++i) for (int j = 0; j < N; ++j) v.add(new AbstractMap.SimpleEntry<Integer AbstractMap.SimpleEntry<Integer Integer>>(-mat[i][j] new AbstractMap.SimpleEntry<Integer Integer>(i + 1 j + 1))); Collections.sort(v new Comparator<AbstractMap.SimpleEntry<Integer AbstractMap.SimpleEntry<Integer Integer>>>() { @Override public int compare(AbstractMap.SimpleEntry<Integer AbstractMap.SimpleEntry<Integer Integer>> a AbstractMap.SimpleEntry<Integer AbstractMap.SimpleEntry<Integer Integer>> b) { return a.getKey().compareTo(b.getKey()); } }); long invPairCnt = 0; int i = 0; while (i < v.size()) { int curr = i; List<AbstractMap.SimpleEntry<Integer Integer>> pairs = new ArrayList<>(); while (curr < v.size() && (v.get(curr).getKey().equals(v.get(i).getKey()))) { pairs.add(v.get(curr).getValue()); invPairCnt += query(v.get(curr).getValue().getKey() v.get(curr).getValue().getValue() bit); curr++; } for (AbstractMap.SimpleEntry<Integer Integer> p : pairs) { int x = p.getKey(); int y = p.getValue(); update(x y 1 bit); } i = curr; } return invPairCnt; } public static void main(String[] args) { int[][] mat = {{4 7 2 9} {6 4 1 7} {5 3 8 1} {3 2 5 6}}; long invPairCnt = countInversionPairs(mat); System.out.println('The number of inversion pairs are: ' + invPairCnt); } } // This code is contributed by Prince Kumar
Ausgabe
The number of inversion pairs are : 43
Zeitkomplexität : O(log(NxN)) wobei N die Größe der Matrix ist
Weltraumkomplexität : O(NxN)
Quiz erstellen