Cycle Sort ist ein instabiler In-Place-Sortieralgorithmus, der besonders nützlich ist, wenn Arrays sortiert werden, die Elemente mit einem kleinen Wertebereich enthalten. Es wurde von W. D. Jones entwickelt und 1963 veröffentlicht.
Die Grundidee der Zyklussortierung besteht darin, das Eingabearray in Zyklen zu unterteilen, wobei jeder Zyklus aus Elementen besteht, die zur gleichen Position im sortierten Ausgabearray gehören. Der Algorithmus führt dann eine Reihe von Austauschvorgängen durch, um jedes Element innerhalb seines Zyklus an der richtigen Position zu platzieren, bis alle Zyklen abgeschlossen sind und das Array sortiert ist.
Hier ist eine Schritt-für-Schritt-Erklärung des Zyklussortierungsalgorithmus:
- Beginnen Sie mit einem unsortierten Array von n Elementen.
- Initialisieren Sie eine Variable „cycleStart“ auf 0.
- Vergleichen Sie jedes Element im Array mit jedem anderen Element rechts davon. Wenn es Elemente gibt, die kleiner als das aktuelle Element sind, erhöhen Sie den CycleStart.
- Wenn CycleStart nach dem Vergleich des ersten Elements mit allen anderen Elementen immer noch 0 ist, gehen Sie zum nächsten Element und wiederholen Sie Schritt 3.
- Sobald ein kleineres Element gefunden wird, tauschen Sie das aktuelle Element mit dem ersten Element in seinem Zyklus aus. Der Zyklus wird dann fortgesetzt, bis das aktuelle Element an seine ursprüngliche Position zurückkehrt.
Wiederholen Sie die Schritte 3–5, bis alle Zyklen abgeschlossen sind.
Das Array ist nun sortiert.
Einer der Vorteile der Zyklussortierung besteht darin, dass sie einen geringen Speicherbedarf hat, da sie das Array direkt sortiert und keinen zusätzlichen Speicher für temporäre Variablen oder Puffer benötigt. In bestimmten Situationen kann es jedoch langsam sein, insbesondere wenn das Eingabearray einen großen Wertebereich aufweist. Dennoch bleibt die Zyklussortierung in bestimmten Kontexten ein nützlicher Sortieralgorithmus, beispielsweise beim Sortieren kleiner Arrays mit begrenzten Wertebereichen.
Cycle Sort ist ein In-Place-Sortieralgorithmus instabiler Sortieralgorithmus und eine Vergleichssortierung, die hinsichtlich der Gesamtzahl der Schreibvorgänge in das ursprüngliche Array theoretisch optimal ist.
Name der Stadt in den USA
- Es ist optimal im Hinblick auf die Anzahl der Speicherschreibvorgänge. Es minimiert die Anzahl der Speicherschreibvorgänge sortieren (Jeder Wert wird entweder nullmal geschrieben, wenn er bereits an der richtigen Position ist, oder einmal an die richtige Position geschrieben.)
- Es basiert auf der Idee, dass das zu sortierende Array in Zyklen unterteilt werden kann. Zyklen können als Diagramm visualisiert werden. Wir haben n Knoten und eine Kante, die vom Knoten i zum Knoten j gerichtet ist, wenn das Element am i-ten Index am j-ten Index im sortierten Array vorhanden sein muss.
Zyklus in arr[] = {2 4 5 1 3}
Zyklus in arr[] = {2 4 5 1 3}- Zyklus in arr[] = {4 3 2 1}
Zyklus in arr[] = {4 3 2 1}
Wir betrachten nacheinander alle Zyklen. Wir betrachten zunächst den Zyklus, der das erste Element enthält. Wir finden die richtige Position des ersten Elements und platzieren es an der richtigen Position, sagen wir j. Wir betrachten den alten Wert von arr[j] und finden seine richtige Position. Wir machen so weiter, bis alle Elemente des aktuellen Zyklus an der richtigen Position platziert sind, d. h. wir kehren nicht zum Startpunkt des Zyklus zurück.
greatandhra
Pseudocode:
Begin
for
start:= 0 to n - 2 do
key := array[start]
location := start
for i:= start + 1 to n-1 do
if array[i] < key then
location: =location +1
done
if location = start then
ignore lower part go for next iteration
while key = array[location] do
location: = location + 1
done
if location != start then
swap array[location] with key
while location != start do
location start
for i:= start + 1 to n-1 do
if array[i] < key then
location: =location +1
done
while key= array[location]
location := location +1
if key != array[location]
Swap array[location] and key
done
done
End
Erläuterung :
arr[] = {10 5 2 3}
index = 0 1 2 3
cycle_start = 0
item = 10 = arr[0]
Find position where we put the item
pos = cycle_start
i=pos+1
while(i
if (arr[i] < item)
pos++;
We put 10 at arr[3] and change item to
old value of arr[3].
arr[] = {10 5 2 10 }
item = 3
Again rotate rest cycle that start with index '0'
Find position where we put the item = 3
we swap item with element at arr[1] now
arr[] = {10 3 2 10 }
item = 5
Again rotate rest cycle that start with index '0' and item = 5
we swap item with element at arr[2].
arr[] = {10 3 5 10 }
item = 2
Again rotate rest cycle that start with index '0' and item = 2
arr[] = { 2 3 5 10 }
Above is one iteration for cycle_stat = 0.
Repeat above steps for cycle_start = 1 2 ..n-2
Nachfolgend finden Sie die Umsetzung des oben genannten Ansatzes:
CPP// C++ program to implement cycle sort #include using namespace std; // Function sort the array using Cycle sort void cycleSort(int arr[] int n) { // count number of memory writes int writes = 0; // traverse array elements and put it to on // the right place for (int cycle_start = 0; cycle_start <= n - 2; cycle_start++) { // initialize item as starting point int item = arr[cycle_start]; // Find position where we put the item. We basically // count all smaller elements on right side of item. int pos = cycle_start; for (int i = cycle_start + 1; i < n; i++) if (arr[i] < item) pos++; // If item is already in correct position if (pos == cycle_start) continue; // ignore all duplicate elements while (item == arr[pos]) pos += 1; // put the item to it's right position if (pos != cycle_start) { swap(item arr[pos]); writes++; } // Rotate rest of the cycle while (pos != cycle_start) { pos = cycle_start; // Find position where we put the element for (int i = cycle_start + 1; i < n; i++) if (arr[i] < item) pos += 1; // ignore all duplicate elements while (item == arr[pos]) pos += 1; // put the item to it's right position if (item != arr[pos]) { swap(item arr[pos]); writes++; } } } // Number of memory writes or swaps // cout << writes << endl ; } // Driver program to test above function int main() { int arr[] = { 1 8 3 9 10 10 2 4 }; int n = sizeof(arr) / sizeof(arr[0]); cycleSort(arr n); cout << 'After sort : ' << endl; for (int i = 0; i < n; i++) cout << arr[i] << ' '; return 0; }
Java // Java program to implement cycle sort import java.util.*; import java.lang.*; class GFG { // Function sort the array using Cycle sort public static void cycleSort(int arr[] int n) { // count number of memory writes int writes = 0; // traverse array elements and put it to on // the right place for (int cycle_start = 0; cycle_start <= n - 2; cycle_start++) { // initialize item as starting point int item = arr[cycle_start]; // Find position where we put the item. We basically // count all smaller elements on right side of item. int pos = cycle_start; for (int i = cycle_start + 1; i < n; i++) if (arr[i] < item) pos++; // If item is already in correct position if (pos == cycle_start) continue; // ignore all duplicate elements while (item == arr[pos]) pos += 1; // put the item to it's right position if (pos != cycle_start) { int temp = item; item = arr[pos]; arr[pos] = temp; writes++; } // Rotate rest of the cycle while (pos != cycle_start) { pos = cycle_start; // Find position where we put the element for (int i = cycle_start + 1; i < n; i++) if (arr[i] < item) pos += 1; // ignore all duplicate elements while (item == arr[pos]) pos += 1; // put the item to it's right position if (item != arr[pos]) { int temp = item; item = arr[pos]; arr[pos] = temp; writes++; } } } } // Driver program to test above function public static void main(String[] args) { int arr[] = { 1 8 3 9 10 10 2 4 }; int n = arr.length; cycleSort(arr n); System.out.println('After sort : '); for (int i = 0; i < n; i++) System.out.print(arr[i] + ' '); } } // Code Contributed by Mohit Gupta_OMG <(0_o)>
Python3 # Python program to implement cycle sort def cycleSort(array): writes = 0 # Loop through the array to find cycles to rotate. for cycleStart in range(0 len(array) - 1): item = array[cycleStart] # Find where to put the item. pos = cycleStart for i in range(cycleStart + 1 len(array)): if array[i] < item: pos += 1 # If the item is already there this is not a cycle. if pos == cycleStart: continue # Otherwise put the item there or right after any duplicates. while item == array[pos]: pos += 1 array[pos] item = item array[pos] writes += 1 # Rotate the rest of the cycle. while pos != cycleStart: # Find where to put the item. pos = cycleStart for i in range(cycleStart + 1 len(array)): if array[i] < item: pos += 1 # Put the item there or right after any duplicates. while item == array[pos]: pos += 1 array[pos] item = item array[pos] writes += 1 return writes # driver code arr = [1 8 3 9 10 10 2 4 ] n = len(arr) cycleSort(arr) print('After sort : ') for i in range(0 n) : print(arr[i] end = ' ') # Code Contributed by Mohit Gupta_OMG <(0_o)>
C# // C# program to implement cycle sort using System; class GFG { // Function sort the array using Cycle sort public static void cycleSort(int[] arr int n) { // count number of memory writes int writes = 0; // traverse array elements and // put it to on the right place for (int cycle_start = 0; cycle_start <= n - 2; cycle_start++) { // initialize item as starting point int item = arr[cycle_start]; // Find position where we put the item. // We basically count all smaller elements // on right side of item. int pos = cycle_start; for (int i = cycle_start + 1; i < n; i++) if (arr[i] < item) pos++; // If item is already in correct position if (pos == cycle_start) continue; // ignore all duplicate elements while (item == arr[pos]) pos += 1; // put the item to it's right position if (pos != cycle_start) { int temp = item; item = arr[pos]; arr[pos] = temp; writes++; } // Rotate rest of the cycle while (pos != cycle_start) { pos = cycle_start; // Find position where we put the element for (int i = cycle_start + 1; i < n; i++) if (arr[i] < item) pos += 1; // ignore all duplicate elements while (item == arr[pos]) pos += 1; // put the item to it's right position if (item != arr[pos]) { int temp = item; item = arr[pos]; arr[pos] = temp; writes++; } } } } // Driver program to test above function public static void Main() { int[] arr = { 1 8 3 9 10 10 2 4 }; int n = arr.Length; // Function calling cycleSort(arr n); Console.WriteLine('After sort : '); for (int i = 0; i < n; i++) Console.Write(arr[i] + ' '); } } // This code is contributed by Nitin Mittal
JavaScript <script> // Javascript program to implement cycle sort // Function sort the array using Cycle sort function cycleSort(arr n) { // count number of memory writes let writes = 0; // traverse array elements and put it to on // the right place for (let cycle_start = 0; cycle_start <= n - 2; cycle_start++) { // initialize item as starting point let item = arr[cycle_start]; // Find position where we put the item. We basically // count all smaller elements on right side of item. let pos = cycle_start; for (let i = cycle_start + 1; i < n; i++) if (arr[i] < item) pos++; // If item is already in correct position if (pos == cycle_start) continue; // ignore all duplicate elements while (item == arr[pos]) pos += 1; // put the item to it's right position if (pos != cycle_start) { let temp = item; item = arr[pos]; arr[pos] = temp; writes++; } // Rotate rest of the cycle while (pos != cycle_start) { pos = cycle_start; // Find position where we put the element for (let i = cycle_start + 1; i < n; i++) if (arr[i] < item) pos += 1; // ignore all duplicate elements while (item == arr[pos]) pos += 1; // put the item to it's right position if (item != arr[pos]) { let temp = item; item = arr[pos]; arr[pos] = temp; writes++; } } } } // Driver code let arr = [ 1 8 3 9 10 10 2 4 ]; let n = arr.length; cycleSort(arr n); document.write('After sort : ' + '
'); for (let i = 0; i < n; i++) document.write(arr[i] + ' '); // This code is contributed by susmitakundugoaldanga. </script>
Ausgabe
After sort : 1 2 3 4 8 9 10 10
Zeitkomplexitätsanalyse :
- Schlimmster Fall: An2)
- Durchschnittlicher Fall: An2)
- Bester Fall: An2)
Hilfsraum: O(1)
- Die Speicherplatzkomplexität ist konstant, da dieser Algorithmus vorhanden ist und zum Sortieren keinen zusätzlichen Speicher benötigt.
Methode 2: Diese Methode ist nur anwendbar, wenn bestimmte Array-Werte oder -Elemente im Bereich von 1 bis N oder 0 bis N liegen. Bei dieser Methode müssen wir ein Array nicht drehen
Javascript-Onload
Ansatz : Alle angegebenen Array-Werte sollten im Bereich von 1 bis N oder 0 bis N liegen. Wenn der Bereich 1 bis N beträgt, ist die korrekte Position jedes Array-Elements der Index == Wert-1, d.
In ähnlicher Weise ist für Werte von 0 bis N die korrekte Indexposition jedes Array-Elements oder -Werts mit seinem Wert identisch, d. h. am 0. Index ist 0 vorhanden, an der 1. Position ist 1 vorhanden.
Erläuterung :
arr[] = {5 3 1 4 2}
index = 0 1 2 3 4
i = 0;
while( i < arr.length)
correctposition = arr[i]-1;
find ith item correct position
for the first time i = 0 arr[0] = 5 correct index of 5 is 4 so arr[i] - 1 = 5-1 = 4
if( arr[i] <= arr.length && arr[i] != arr[correctposition])
arr[i] = 5 and arr[correctposition] = 4
so 5 <= 5 && 5 != 4 if condition true
now swap the 5 with 4
int temp = arr[i];
arr[i] = arr[correctposition];
arr[correctposition] = temp;
now resultant arr at this after 1st swap
arr[] = {2 3 1 4 5} now 5 is shifted at its correct position
now loop will run again check for i = 0 now arr[i] is = 2
after swapping 2 at its correct position
arr[] = {3 2 1 4 5}
now loop will run again check for i = 0 now arr[i] is = 3
after swapping 3 at its correct position
arr[] = {1 2 3 4 5}
now loop will run again check for i = 0 now arr[i] is = 1
this time 1 is at its correct position so else block will execute and i will increment i = 1;
once i exceeds the size of array will get array sorted.
arr[] = {1 2 3 4 5}
else
i++;
loop end;
once while loop end we get sorted array just print it
for( index = 0 ; index < arr.length; index++)
print(arr[index] + ' ')
sorted arr[] = {1 2 3 4 5}
Nachfolgend finden Sie die Umsetzung des oben genannten Ansatzes:
C++#include using namespace std; void cyclicSort(int arr[] int n){ int i = 0; while(i < n) { // as array is of 1 based indexing so the // correct position or index number of each // element is element-1 i.e. 1 will be at 0th // index similarly 2 correct index will 1 so // on... int correct = arr[i] - 1 ; if(arr[i] != arr[correct]){ // if array element should be lesser than // size and array element should not be at // its correct position then only swap with // its correct position or index value swap(arr[i] arr[correct]) ; }else{ // if element is at its correct position // just increment i and check for remaining // array elements i++ ; } } } void printArray(int arr[] int size) { int i; for (i = 0; i < size; i++) cout << arr[i] << ' '; cout << endl; } int main() { int arr[] = { 3 2 4 5 1}; int n = sizeof(arr) / sizeof(arr[0]); cout << 'Before sorting array: n'; printArray(arr n); cyclicSort(arr n); cout << 'Sorted array: n'; printArray(arr n); return 0; }
Java // java program to check implement cycle sort import java.util.*; public class MissingNumber { public static void main(String[] args) { int[] arr = { 3 2 4 5 1 }; int n = arr.length; System.out.println('Before sort :'); System.out.println(Arrays.toString(arr)); CycleSort(arr n); } static void CycleSort(int[] arr int n) { int i = 0; while (i < n) { // as array is of 1 based indexing so the // correct position or index number of each // element is element-1 i.e. 1 will be at 0th // index similarly 2 correct index will 1 so // on... int correctpos = arr[i] - 1; if (arr[i] < n && arr[i] != arr[correctpos]) { // if array element should be lesser than // size and array element should not be at // its correct position then only swap with // its correct position or index value swap(arr i correctpos); } else { // if element is at its correct position // just increment i and check for remaining // array elements i++; } } System.out.println('After sort : '); System.out.print(Arrays.toString(arr)); } static void swap(int[] arr int i int correctpos) { // swap elements with their correct indexes int temp = arr[i]; arr[i] = arr[correctpos]; arr[correctpos] = temp; } } // this code is contributed by devendra solunke
Python # Python program to check implement cycle sort def cyclicSort(arr n): i = 0 while i < n: # as array is of 1 based indexing so the # correct position or index number of each # element is element-1 i.e. 1 will be at 0th # index similarly 2 correct index will 1 so # on... correct = arr[i] - 1 if arr[i] != arr[correct]: # if array element should be lesser than # size and array element should not be at # its correct position then only swap with # its correct position or index value arr[i] arr[correct] = arr[correct] arr[i] else: # if element is at its correct position # just increment i and check for remaining # array elements i += 1 def printArray(arr): print(*arr) arr = [3 2 4 5 1] n = len(arr) print('Before sorting array:') printArray(arr) # Function Call cyclicSort(arr n) print('Sorted array:') printArray(arr) # This Code is Contributed by Prasad Kandekar(prasad264)
C# using System; public class GFG { static void CycleSort(int[] arr int n) { int i = 0; while (i < n) { // as array is of 1 based indexing so the // correct position or index number of each // element is element-1 i.e. 1 will be at 0th // index similarly 2 correct index will 1 so // on... int correctpos = arr[i] - 1; if (arr[i] < n && arr[i] != arr[correctpos]) { // if array element should be lesser than // size and array element should not be at // its correct position then only swap with // its correct position or index value swap(arr i correctpos); } else { // if element is at its correct position // just increment i and check for remaining // array elements i++; } } Console.Write('nAfter sort : '); for (int index = 0; index < n; index++) Console.Write(arr[index] + ' '); } static void swap(int[] arr int i int correctpos) { // swap elements with their correct indexes int temp = arr[i]; arr[i] = arr[correctpos]; arr[correctpos] = temp; } static public void Main() { // Code int[] arr = { 3 2 4 5 1 }; int n = arr.Length; Console.Write('Before sort : '); for (int i = 0; i < n; i++) Console.Write(arr[i] + ' '); CycleSort(arr n); } } // This code is contributed by devendra solunke
JavaScript // JavaScript code for the above code function cyclicSort(arr n) { var i = 0; while (i < n) { // as array is of 1 based indexing so the // correct position or index number of each // element is element-1 i.e. 1 will be at 0th // index similarly 2 correct index will 1 so // on... let correct = arr[i] - 1; if (arr[i] !== arr[correct]) { // if array element should be lesser than // size and array element should not be at // its correct position then only swap with // its correct position or index value [arr[i] arr[correct]] = [arr[correct] arr[i]]; } else { // if element is at its correct position // just increment i and check for remaining // array elements i++; } } } function printArray(arr size) { for (var i = 0; i < size; i++) { console.log(arr[i] + ' '); } console.log('n'); } var arr = [3 2 4 5 1]; var n = arr.length; console.log('Before sorting array: n'); printArray(arr n); cyclicSort(arr n); console.log('Sorted array: n'); printArray(arr n); // This Code is Contributed by Prasad Kandekar(prasad264)
Ausgabe
Before sorting array: 3 2 4 5 1 Sorted array: 1 2 3 4 5
Zeitkomplexitätsanalyse:
- Schlimmster Fall: An)
- Durchschnittlicher Fall: An)
- Bester Fall: An)
Hilfsraum: O(1)
Vorteil der Zyklussortierung:
- Es ist kein zusätzlicher Speicher erforderlich.
- In-Place-Sortieralgorithmus.
- Eine Mindestanzahl von Schreibvorgängen in den Speicher
- Die Zyklussortierung ist nützlich, wenn das Array im EEPROM oder FLASH gespeichert ist.
Nachteil der Zyklussortierung:
- Es wird nicht meistens verwendet.
- Es hat mehr Zeitkomplexität o(n^2)
- Instabiler Sortieralgorithmus.
Anwendung der Zyklussortierung:
- Dieser Sortieralgorithmus eignet sich am besten für Situationen, in denen Speicherschreib- oder Auslagerungsvorgänge kostspielig sind.
- Nützlich für komplexe Probleme.