#practiceLinkDiv { display: none !important; }Wir erhalten ein Array von Ganzzahlen und einen Bereich, den wir benötigen, um herauszufinden, ob das Subarray, das in diesen Bereich fällt, Werte in Form eines Berges hat oder nicht. Alle Werte des Subarrays haben die Form eines Berges, wenn entweder alle Werte steigen oder fallen oder zuerst steigen und dann fallen.
Formaler ein Subarray [a1 a2 a3…aN] Man sagt, dass es die Form eines Berges hat, wenn es eine ganze Zahl K 1 gibt<= K <= N such that
a1<= a2 <= a3 .. <= aK >= a(K+1) >= a(K+2) …. >= aN
Beispiele:
Input : Arr[] = [2 3 2 4 4 6 3 2] Range = [0 2] Output : Yes Explanation: The output is yes subarray is [2 3 2] so subarray first increases and then decreases Input: Arr[] = [2 3 2 4 4 6 3 2] Range = [2 7] Output: Yes Explanation: The output is yes subarray is [2 4 4 6 3 2] so subarray first increases and then decreases Input: Arr[]= [2 3 2 4 4 6 3 2] Range = [1 3] Output: no Explanation: The output is no subarray is [3 2 4] so subarray is not in the form above statedRecommended Practice Berg-Subarray-Problem Probieren Sie es aus!
Lösung:
- Erstellen Sie zwei zusätzliche Längenräume N links Und Rechts und eine zusätzliche Variable lastptr
- Initialisieren links[0] = 0 und lastptr = 0
- Durchlaufen Sie das ursprüngliche Array vom zweiten Index bis zum Ende
- Überprüfen Sie für jeden Index, ob er größer als das vorherige Element ist. Wenn ja, aktualisieren Sie ihn lastptr mit dem aktuellen Index.
- Für jeden Indexspeicher die lastptr In links[i]
- initialisieren rechts[N-1] = N-1 und lastptr = N-1
- Durchlaufen Sie das ursprüngliche Array vom vorletzten Index bis zum Anfang
- Überprüfen Sie bei jedem Index, ob er größer als das nächste Element ist. Wenn ja, aktualisieren Sie ihn lastptr mit dem aktuellen Index.
- Für jeden Indexspeicher die lastptr In richtig[i]
- Bearbeiten Sie nun die Abfragen
- für jede Anfrage lr Wenn rechts[l] >= links[r] dann drucken Ja anders NEIN
// C++ program to check whether a subarray is in // mountain form or not #include using namespace std; // Utility method to construct left and right array int preprocess(int arr[] int N int left[] int right[]) { // Initialize first left index as that index only left[0] = 0; int lastIncr = 0; for (int i = 1; i < N; i++) { // if current value is greater than previous // update last increasing if (arr[i] > arr[i - 1]) lastIncr = i; left[i] = lastIncr; } // Initialize last right index as that index only right[N - 1] = N - 1; int firstDecr = N - 1; for (int i = N - 2; i >= 0; i--) { // if current value is greater than next // update first decreasing if (arr[i] > arr[i + 1]) firstDecr = i; right[i] = firstDecr; } } // Method returns true if arr[L..R] is in mountain form bool isSubarrayMountainForm(int arr[] int left[] int right[] int L int R) { // return true only if right at starting range is // greater than left at ending range return (right[L] >= left[R]); } // Driver code to test above methods int main() { int arr[] = {2 3 2 4 4 6 3 2}; int N = sizeof(arr) / sizeof(int); int left[N] right[N]; preprocess(arr N left right); int L = 0; int R = 2; if (isSubarrayMountainForm(arr left right L R)) cout << 'Subarray is in mountain formn'; else cout << 'Subarray is not in mountain formn'; L = 1; R = 3; if (isSubarrayMountainForm(arr left right L R)) cout << 'Subarray is in mountain formn'; else cout << 'Subarray is not in mountain formn'; return 0; }
Java // Java program to check whether a subarray is in // mountain form or not class SubArray { // Utility method to construct left and right array static void preprocess(int arr[] int N int left[] int right[]) { // initialize first left index as that index only left[0] = 0; int lastIncr = 0; for (int i = 1; i < N; i++) { // if current value is greater than previous // update last increasing if (arr[i] > arr[i - 1]) lastIncr = i; left[i] = lastIncr; } // initialize last right index as that index only right[N - 1] = N - 1; int firstDecr = N - 1; for (int i = N - 2; i >= 0; i--) { // if current value is greater than next // update first decreasing if (arr[i] > arr[i + 1]) firstDecr = i; right[i] = firstDecr; } } // method returns true if arr[L..R] is in mountain form static boolean isSubarrayMountainForm(int arr[] int left[] int right[] int L int R) { // return true only if right at starting range is // greater than left at ending range return (right[L] >= left[R]); } public static void main(String[] args) { int arr[] = {2 3 2 4 4 6 3 2}; int N = arr.length; int left[] = new int[N]; int right[] = new int[N]; preprocess(arr N left right); int L = 0; int R = 2; if (isSubarrayMountainForm(arr left right L R)) System.out.println('Subarray is in mountain form'); else System.out.println('Subarray is not in mountain form'); L = 1; R = 3; if (isSubarrayMountainForm(arr left right L R)) System.out.println('Subarray is in mountain form'); else System.out.println('Subarray is not in mountain form'); } } // This Code is Contributed by Saket Kumar
Python3 # Python 3 program to check whether a subarray is in # mountain form or not # Utility method to construct left and right array def preprocess(arr N left right): # initialize first left index as that index only left[0] = 0 lastIncr = 0 for i in range(1N): # if current value is greater than previous # update last increasing if (arr[i] > arr[i - 1]): lastIncr = i left[i] = lastIncr # initialize last right index as that index only right[N - 1] = N - 1 firstDecr = N - 1 i = N - 2 while(i >= 0): # if current value is greater than next # update first decreasing if (arr[i] > arr[i + 1]): firstDecr = i right[i] = firstDecr i -= 1 # method returns true if arr[L..R] is in mountain form def isSubarrayMountainForm(arr left right L R): # return true only if right at starting range is # greater than left at ending range return (right[L] >= left[R]) # Driver code if __name__ == '__main__': arr = [2 3 2 4 4 6 3 2] N = len(arr) left = [0 for i in range(N)] right = [0 for i in range(N)] preprocess(arr N left right) L = 0 R = 2 if (isSubarrayMountainForm(arr left right L R)): print('Subarray is in mountain form') else: print('Subarray is not in mountain form') L = 1 R = 3 if (isSubarrayMountainForm(arr left right L R)): print('Subarray is in mountain form') else: print('Subarray is not in mountain form') # This code is contributed by # Surendra_Gangwar
C# // C# program to check whether // a subarray is in mountain // form or not using System; class GFG { // Utility method to construct // left and right array static void preprocess(int []arr int N int []left int []right) { // initialize first left // index as that index only left[0] = 0; int lastIncr = 0; for (int i = 1; i < N; i++) { // if current value is // greater than previous // update last increasing if (arr[i] > arr[i - 1]) lastIncr = i; left[i] = lastIncr; } // initialize last right // index as that index only right[N - 1] = N - 1; int firstDecr = N - 1; for (int i = N - 2; i >= 0; i--) { // if current value is // greater than next // update first decreasing if (arr[i] > arr[i + 1]) firstDecr = i; right[i] = firstDecr; } } // method returns true if // arr[L..R] is in mountain form static bool isSubarrayMountainForm(int []arr int []left int []right int L int R) { // return true only if right at // starting range is greater // than left at ending range return (right[L] >= left[R]); } // Driver Code static public void Main () { int []arr = {2 3 2 4 4 6 3 2}; int N = arr.Length; int []left = new int[N]; int []right = new int[N]; preprocess(arr N left right); int L = 0; int R = 2; if (isSubarrayMountainForm(arr left right L R)) Console.WriteLine('Subarray is in ' + 'mountain form'); else Console.WriteLine('Subarray is not ' + 'in mountain form'); L = 1; R = 3; if (isSubarrayMountainForm(arr left right L R)) Console.WriteLine('Subarray is in ' + 'mountain form'); else Console.WriteLine('Subarray is not ' + 'in mountain form'); } } // This code is contributed by aj_36
JavaScript <script> // Javascript program to check whether // a subarray is in mountain // form or not // Utility method to construct // left and right array function preprocess(arr N left right) { // initialize first left // index as that index only left[0] = 0; let lastIncr = 0; for (let i = 1; i < N; i++) { // if current value is // greater than previous // update last increasing if (arr[i] > arr[i - 1]) lastIncr = i; left[i] = lastIncr; } // initialize last right // index as that index only right[N - 1] = N - 1; let firstDecr = N - 1; for (let i = N - 2; i >= 0; i--) { // if current value is // greater than next // update first decreasing if (arr[i] > arr[i + 1]) firstDecr = i; right[i] = firstDecr; } } // method returns true if // arr[L..R] is in mountain form function isSubarrayMountainForm(arr left right L R) { // return true only if right at // starting range is greater // than left at ending range return (right[L] >= left[R]); } let arr = [2 3 2 4 4 6 3 2]; let N = arr.length; let left = new Array(N); let right = new Array(N); preprocess(arr N left right); let L = 0; let R = 2; if (isSubarrayMountainForm(arr left right L R)) document.write('Subarray is in ' + 'mountain form' + ''); else document.write('Subarray is not ' + 'in mountain form' + ''); L = 1; R = 3; if (isSubarrayMountainForm(arr left right L R)) document.write('Subarray is in ' + 'mountain form'); else document.write('Subarray is not ' + 'in mountain form'); </script>
Subarray is in mountain form Subarray is not in mountain form
Da nur zwei Durchläufe erforderlich sind, beträgt die Zeitkomplexität O(n).
Es sind zwei zusätzliche Räume der Länge n erforderlich, sodass die Raumkomplexität O(n) beträgt.