Gegeben ein Array arr[] der Größe N . Die Aufgabe besteht darin, die Summe des zusammenhängenden Teilarrays innerhalb von a zu ermitteln arr[] mit der größten Summe.
Beispiel:
Eingang: arr = {-2,-3,4,-1,-2,1,5,-3}
Ausgabe: 7
Erläuterung: Das Subarray {4,-1, -2, 1, 5} hat die größte Summe 7.Eingang: arr = {2}
Ausgabe: 2
Erläuterung: Das Subarray {2} hat die größte Summe 1.Eingang: arr = {5,4,1,7,8}
Ausgabe: 25
Erläuterung: Das Subarray {5,4,1,7,8} hat die größte Summe 25.
Die Idee von Kadanes Algorithmus besteht darin, eine Variable zu pflegen max_ending_here Das speichert die maximale Summe zusammenhängender Subarrays, die am aktuellen Index enden, und eine Variable max_so_far speichert die maximale Summe der bisher gefundenen zusammenhängenden Subarrays, jedes Mal, wenn ein positiver Summenwert vorliegt max_ending_here vergleiche es mit max_so_far und aktualisieren max_so_far wenn es größer ist als max_so_far .
Also das Wichtigste Intuition hinter Kadanes Algorithmus Ist,
- Das Subarray mit der negativen Summe wird verworfen ( durch Zuweisen von max_ending_here = 0 im Code ).
- Wir tragen das Subarray, bis es eine positive Summe ergibt.
Pseudocode des Kadane-Algorithmus:
Initialisieren:
max_so_far = INT_MIN
max_ending_here = 0Schleife für jedes Element des Arrays
(a) max_ending_here = max_ending_here + a[i]
(b) if(max_so_far
max_so_far = max_ending_here
(c) if(max_ending_here <0)
max_ending_here = 0
gib max_so_far zurück
Illustration des Kadane-Algorithmus:
Nehmen wir das Beispiel: {-2, -3, 4, -1, -2, 1, 5, -3}
Notiz : Im Bild wird max_so_far dargestellt durch Max_Summe und max_ending_here von Curr_Sum
Für i=0 ist a[0] = -2
schwebendes CSS
- max_ending_here = max_ending_here + (-2)
- Setzen Sie max_ending_here = 0, da max_ending_here <0
- und setze max_so_far = -2
Für i=1 ist a[1] = -3
- max_ending_here = max_ending_here + (-3)
- Da max_ending_here = -3 und max_so_far = -2, bleibt max_so_far -2
- Setzen Sie max_ending_here = 0, da max_ending_here <0
Für i=2 ist a[2] = 4
- max_ending_here = max_ending_here + (4)
- max_ending_here = 4
- max_so_far wird auf 4 aktualisiert, da max_ending_here größer als max_so_far ist, was bisher -2 war
Für i=3 ist a[3] = -1
- max_ending_here = max_ending_here + (-1)
- max_ending_here = 3
Für i=4 ist a[4] = -2
- max_ending_here = max_ending_here + (-2)
- max_ending_here = 1
Für i=5 ist a[5] = 1
- max_ending_here = max_ending_here + (1)
- max_ending_here = 2
Für i=6 ist a[6] = 5
- max_ending_here = max_ending_here + (5)
- max_ending_here =
- max_so_far wird auf 7 aktualisiert, da max_ending_here größer als max_so_far ist
Für i=7 ist a[7] = -3
- max_ending_here = max_ending_here + (-3)
- max_ending_here = 4
Befolgen Sie die folgenden Schritte, um die Idee umzusetzen:
- Initialisieren Sie die Variablen max_so_far = INT_MIN und max_ending_here = 0
- Führen Sie eine for-Schleife aus 0 Zu N-1 und für jeden Index ich :
- Fügen Sie das arr[i] hinzu zu max_ending_here.
- Wenn max_so_far kleiner als max_ending_here ist, dann aktualisieren max_so_far bis max_ending_here .
- Wenn max_ending_here <0, dann aktualisieren Sie max_ending_here = 0
- Gibt max_so_far zurück
Nachfolgend finden Sie die Umsetzung des oben genannten Ansatzes.
C++ // C++ program to print largest contiguous array sum #include using namespace std; int maxSubArraySum(int a[], int size) { int max_so_far = INT_MIN, max_ending_here = 0; for (int i = 0; i < size; i++) { max_ending_here = max_ending_here + a[i]; if (max_so_far < max_ending_here) max_so_far = max_ending_here; if (max_ending_here < 0) max_ending_here = 0; } return max_so_far; } // Driver Code int main() { int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 }; int n = sizeof(a) / sizeof(a[0]); // Function Call int max_sum = maxSubArraySum(a, n); cout << 'Maximum contiguous sum is ' << max_sum; return 0; }> Java // Java program to print largest contiguous array sum import java.io.*; import java.util.*; class Kadane { // Driver Code public static void main(String[] args) { int[] a = { -2, -3, 4, -1, -2, 1, 5, -3 }; System.out.println('Maximum contiguous sum is ' + maxSubArraySum(a)); } // Function Call static int maxSubArraySum(int a[]) { int size = a.length; int max_so_far = Integer.MIN_VALUE, max_ending_here = 0; for (int i = 0; i < size; i++) { max_ending_here = max_ending_here + a[i]; if (max_so_far < max_ending_here) max_so_far = max_ending_here; if (max_ending_here < 0) max_ending_here = 0; } return max_so_far; } }> Python def GFG(a, size): max_so_far = float('-inf') # Use float('-inf') instead of maxint max_ending_here = 0 for i in range(0, size): max_ending_here = max_ending_here + a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here if max_ending_here < 0: max_ending_here = 0 return max_so_far # Driver function to check the above function a = [-2, -3, 4, -1, -2, 1, 5, -3] print('Maximum contiguous sum is', GFG(a, len(a)))> C# // C# program to print largest // contiguous array sum using System; class GFG { static int maxSubArraySum(int[] a) { int size = a.Length; int max_so_far = int.MinValue, max_ending_here = 0; for (int i = 0; i < size; i++) { max_ending_here = max_ending_here + a[i]; if (max_so_far < max_ending_here) max_so_far = max_ending_here; if (max_ending_here < 0) max_ending_here = 0; } return max_so_far; } // Driver code public static void Main() { int[] a = { -2, -3, 4, -1, -2, 1, 5, -3 }; Console.Write('Maximum contiguous sum is ' + maxSubArraySum(a)); } } // This code is contributed by Sam007_> Javascript >
PHP // PHP program to print largest // contiguous array sum function maxSubArraySum($a, $size) { $max_so_far = PHP_INT_MIN; $max_ending_here = 0; for ($i = 0; $i < $size; $i++) { $max_ending_here = $max_ending_here + $a[$i]; if ($max_so_far < $max_ending_here) $max_so_far = $max_ending_here; if ($max_ending_here < 0) $max_ending_here = 0; } return $max_so_far; } // Driver code $a = array(-2, -3, 4, -1, -2, 1, 5, -3); $n = count($a); $max_sum = maxSubArraySum($a, $n); echo 'Maximum contiguous sum is ' , $max_sum; // This code is contributed by anuj_67. ?>> Ausgabe
Maximum contiguous sum is 7>
Zeitkomplexität: AN)
Hilfsraum: O(1)
Drucken Sie das zusammenhängende Subarray mit der größten Summe:
Um das Subarray mit der maximalen Summe zu drucken, die beibehalten werden soll Start Index von Maximum_sum_ending_here beim aktuellen Index, so dass wann immer Maximum_sum_so_far wird mit aktualisiert Maximum_sum_ending_here Dann können der Startindex und der Endindex des Subarrays mit aktualisiert werden Start Und aktueller Index .
Befolgen Sie die folgenden Schritte, um die Idee umzusetzen:
- Initialisieren Sie die Variablen S , Start, Und Ende mit 0 Und max_so_far = INT_MIN und max_ending_here = 0
- Führen Sie eine for-Schleife aus 0 Zu N-1 und für jeden Index ich :
- Fügen Sie das arr[i] hinzu zu max_ending_here.
- Wenn max_so_far kleiner als max_ending_here ist, dann aktualisieren max_so_far zu max_ending_here und aktualisieren Start Zu S Und Ende Zu ich .
- Wenn max_ending_here <0, dann aktualisieren Sie max_ending_here = 0 und S mit i+1 .
- Werte aus dem Index drucken Start Zu Ende .
Nachfolgend finden Sie die Umsetzung des oben genannten Ansatzes:
C++ // C++ program to print largest contiguous array sum #include #include using namespace std; void maxSubArraySum(int a[], int size) { int max_so_far = INT_MIN, max_ending_here = 0, start = 0, end = 0, s = 0; for (int i = 0; i < size; i++) { max_ending_here += a[i]; if (max_so_far < max_ending_here) { max_so_far = max_ending_here; start = s; end = i; } if (max_ending_here < 0) { max_ending_here = 0; s = i + 1; } } cout << 'Maximum contiguous sum is ' << max_so_far << endl; cout << 'Starting index ' << start << endl << 'Ending index ' << end << endl; } /*Driver program to test maxSubArraySum*/ int main() { int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 }; int n = sizeof(a) / sizeof(a[0]); maxSubArraySum(a, n); return 0; }> Java // Java program to print largest // contiguous array sum import java.io.*; import java.util.*; class GFG { static void maxSubArraySum(int a[], int size) { int max_so_far = Integer.MIN_VALUE, max_ending_here = 0, start = 0, end = 0, s = 0; for (int i = 0; i < size; i++) { max_ending_here += a[i]; if (max_so_far < max_ending_here) { max_so_far = max_ending_here; start = s; end = i; } if (max_ending_here < 0) { max_ending_here = 0; s = i + 1; } } System.out.println('Maximum contiguous sum is ' + max_so_far); System.out.println('Starting index ' + start); System.out.println('Ending index ' + end); } // Driver code public static void main(String[] args) { int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 }; int n = a.length; maxSubArraySum(a, n); } } // This code is contributed by prerna saini> Python # Python program to print largest contiguous array sum from sys import maxsize # Function to find the maximum contiguous subarray # and print its starting and end index def maxSubArraySum(a, size): max_so_far = -maxsize - 1 max_ending_here = 0 start = 0 end = 0 s = 0 for i in range(0, size): max_ending_here += a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here start = s end = i if max_ending_here < 0: max_ending_here = 0 s = i+1 print('Maximum contiguous sum is %d' % (max_so_far)) print('Starting Index %d' % (start)) print('Ending Index %d' % (end)) # Driver program to test maxSubArraySum a = [-2, -3, 4, -1, -2, 1, 5, -3] maxSubArraySum(a, len(a))> C# // C# program to print largest // contiguous array sum using System; class GFG { static void maxSubArraySum(int[] a, int size) { int max_so_far = int.MinValue, max_ending_here = 0, start = 0, end = 0, s = 0; for (int i = 0; i < size; i++) { max_ending_here += a[i]; if (max_so_far < max_ending_here) { max_so_far = max_ending_here; start = s; end = i; } if (max_ending_here < 0) { max_ending_here = 0; s = i + 1; } } Console.WriteLine('Maximum contiguous ' + 'sum is ' + max_so_far); Console.WriteLine('Starting index ' + start); Console.WriteLine('Ending index ' + end); } // Driver code public static void Main() { int[] a = { -2, -3, 4, -1, -2, 1, 5, -3 }; int n = a.Length; maxSubArraySum(a, n); } } // This code is contributed // by anuj_67.> Javascript >
PHP // PHP program to print largest // contiguous array sum function maxSubArraySum($a, $size) { $max_so_far = PHP_INT_MIN; $max_ending_here = 0; $start = 0; $end = 0; $s = 0; for ($i = 0; $i < $size; $i++) { $max_ending_here += $a[$i]; if ($max_so_far < $max_ending_here) { $max_so_far = $max_ending_here; $start = $s; $end = $i; } if ($max_ending_here < 0) { $max_ending_here = 0; $s = $i + 1; } } echo 'Maximum contiguous sum is '. $max_so_far.'
'; echo 'Starting index '. $start . '
'. 'Ending index ' . $end . '
'; } // Driver Code $a = array(-2, -3, 4, -1, -2, 1, 5, -3); $n = sizeof($a); maxSubArraySum($a, $n); // This code is contributed // by ChitraNayal ?>> Ausgabe
Maximum contiguous sum is 7 Starting index 2 Ending index 6>
Zeitkomplexität: An)
Hilfsraum: O(1)
Größte Summe zusammenhängender Subarrays unter Verwendung Dynamische Programmierung :
Für jeden Index i speichert DP[i] das maximal mögliche zusammenhängende Subarray mit der größten Summe, das bei Index i endet, und daher können wir DP[i] mithilfe des erwähnten Zustandsübergangs berechnen:
Kylie Jenners Geschwister
- DP[i] = max(DP[i-1] + arr[i], arr[i])
Unten ist die Implementierung:
C++ // C++ program to print largest contiguous array sum #include using namespace std; void maxSubArraySum(int a[], int size) { vector dp(Größe, 0); dp[0] = a[0]; int ans = dp[0]; für (int i = 1; i< size; i++) { dp[i] = max(a[i], a[i] + dp[i - 1]); ans = max(ans, dp[i]); } cout << ans; } /*Driver program to test maxSubArraySum*/ int main() { int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 }; int n = sizeof(a) / sizeof(a[0]); maxSubArraySum(a, n); return 0; }> Java import java.util.Arrays; public class Main { // Function to find the largest contiguous array sum public static void maxSubArraySum(int[] a) { int size = a.length; int[] dp = new int[size]; // Create an array to store intermediate results dp[0] = a[0]; // Initialize the first element of the intermediate array with the first element of the input array int ans = dp[0]; // Initialize the answer with the first element of the intermediate array for (int i = 1; i < size; i++) { // Calculate the maximum of the current element and the sum of the current element and the previous result dp[i] = Math.max(a[i], a[i] + dp[i - 1]); // Update the answer with the maximum value encountered so far ans = Math.max(ans, dp[i]); } // Print the maximum contiguous array sum System.out.println(ans); } public static void main(String[] args) { int[] a = { -2, -3, 4, -1, -2, 1, 5, -3 }; maxSubArraySum(a); // Call the function to find and print the maximum contiguous array sum } } // This code is contributed by shivamgupta310570> Python # Python program for the above approach def max_sub_array_sum(a, size): # Create a list to store intermediate results dp = [0] * size # Initialize the first element of the list with the first element of the array dp[0] = a[0] # Initialize the answer with the first element of the array ans = dp[0] # Loop through the array starting from the second element for i in range(1, size): # Choose the maximum value between the current element and the sum of the current element # and the previous maximum sum (stored in dp[i - 1]) dp[i] = max(a[i], a[i] + dp[i - 1]) # Update the overall maximum sum ans = max(ans, dp[i]) # Print the maximum contiguous subarray sum print(ans) # Driver program to test max_sub_array_sum if __name__ == '__main__': # Sample array a = [-2, -3, 4, -1, -2, 1, 5, -3] # Get the length of the array n = len(a) # Call the function to find the maximum contiguous subarray sum max_sub_array_sum(a, n) # This code is contributed by Susobhan Akhuli>
C# using System; class MaxSubArraySum { // Function to find and print the maximum sum of a // subarray static void FindMaxSubArraySum(int[] arr, int size) { // Create an array to store the maximum sum of // subarrays int[] dp = new int[size]; // Initialize the first element of dp with the first // element of arr dp[0] = arr[0]; // Initialize a variable to store the final result int ans = dp[0]; // Iterate through the array to find the maximum sum for (int i = 1; i < size; i++) { // Calculate the maximum sum ending at the // current position dp[i] = Math.Max(arr[i], arr[i] + dp[i - 1]); // Update the final result with the maximum sum // found so far ans = Math.Max(ans, dp[i]); } // Print the maximum sum of the subarray Console.WriteLine(ans); } // Driver program to test FindMaxSubArraySum static void Main() { // Example array int[] arr = { -2, -3, 4, -1, -2, 1, 5, -3 }; // Calculate and print the maximum subarray sum FindMaxSubArraySum(arr, arr.Length); } }> Javascript // Javascript program to print largest contiguous array sum // Function to find the largest contiguous array sum function maxSubArraySum(a) { let size = a.length; // Create an array to store intermediate results let dp = new Array(size); // Initialize the first element of the intermediate array with the first element of the input array dp[0] = a[0]; // Initialize the answer with the first element of the intermediate array let ans = dp[0]; for (let i = 1; i < size; i++) { // Calculate the maximum of the current element and the sum of the current element and the previous result dp[i] = Math.max(a[i], a[i] + dp[i - 1]); // Update the answer with the maximum value encountered so far ans = Math.max(ans, dp[i]); } // Print the maximum contiguous array sum console.log(ans); } let a = [-2, -3, 4, -1, -2, 1, 5, -3]; // Call the function to find and print the maximum contiguous array sum maxSubArraySum(a);> Ausgabe
7>
Übungsproblem:
Schreiben Sie bei einem gegebenen Array von ganzen Zahlen (möglicherweise sind einige Elemente negativ) ein C-Programm, um das *maximal mögliche Produkt* zu ermitteln, indem Sie „n“ aufeinanderfolgende ganze Zahlen im Array multiplizieren, wobei n ? ARRAY_SIZE. Drucken Sie außerdem den Startpunkt des maximalen Produkt-Subarrays.