logo

Mindestentfernung, die zurückgelegt werden muss, um alle Intervalle abzudecken

Gegeben sind viele Intervalle als Bereiche und unsere Position. Wir müssen die Mindestentfernung finden, die wir zurücklegen müssen, um einen solchen Punkt zu erreichen, der alle Intervalle gleichzeitig abdeckt. 

Beispiele:  

Input : Intervals = [(0 7) (2 14) (4 6)] Position = 3 Output : 1 We can reach position 4 by travelling distance 1 at which all intervals will be covered. So answer will be 1 Input : Intervals = [(1 2) (2 3) (3 4)] Position = 2 Output : -1 It is not possible to cover all intervals at once at any point Input : Intervals = [(1 2) (2 3) (1 4)] Position = 2 Output : 0 All Intervals are covered at current position only so no need travel and answer will be 0 All above examples are shown in below diagram.

Mindestentfernung, die zurückgelegt werden muss, um alle Intervalle abzudecken



Wir können dieses Problem lösen, indem wir uns nur auf Endpunkte konzentrieren. Da die Anforderung darin besteht, alle Intervalle durch Erreichen eines Punktes abzudecken, müssen alle Intervalle einen gemeinsamen Punkt haben, damit eine Antwort existiert. Auch das Intervall mit dem Endpunkt ganz links muss sich mit dem Intervall ganz rechts am Startpunkt überlappen. 
Zuerst ermitteln wir den Startpunkt ganz rechts und den Endpunkt ganz links aus allen Intervallen. Dann können wir unsere Position mit diesen Punkten vergleichen, um das unten erläuterte Ergebnis zu erhalten: 

  1. Wenn dieser Startpunkt ganz rechts rechts vom Endpunkt ganz links liegt, ist es nicht möglich, alle Intervalle gleichzeitig abzudecken. (wie in Beispiel 2)
  2. Wenn unsere Position in der Mitte zwischen dem äußersten rechten Start und dem äußersten linken Ende liegt, besteht keine Notwendigkeit zu reisen und alle Intervalle werden nur von der aktuellen Position abgedeckt (wie in Beispiel 3).
  3. Wenn unsere Position links von beiden Punkten liegt, müssen wir bis zum Startpunkt ganz rechts reisen, und wenn unsere Position rechts von beiden Punkten ist, müssen wir bis zum Endpunkt ganz links reisen.

Sehen Sie sich das obige Diagramm an, um diese Fälle zu verstehen. Wie im ersten Beispiel ist der Anfang ganz rechts 4 und das Ende ganz links 6, sodass wir von der aktuellen Position 3 aus 4 erreichen müssen, um alle Intervalle abzudecken. 

Zum besseren Verständnis sehen Sie sich bitte den folgenden Code an.  

C++
// C++ program to find minimum distance to  // travel to cover all intervals #include    using namespace std; // structure to store an interval struct Interval {  int start end;  Interval(int start int end) : start(start)   end(end)  {} }; // Method returns minimum distance to travel  // to cover all intervals int minDistanceToCoverIntervals(Interval intervals[]   int N int x) {  int rightMostStart = INT_MIN;  int leftMostEnd = INT_MAX;  // looping over all intervals to get right most  // start and left most end  for (int i = 0; i < N; i++)  {  if (rightMostStart < intervals[i].start)  rightMostStart = intervals[i].start;  if (leftMostEnd > intervals[i].end)  leftMostEnd = intervals[i].end;  }    int res;  /* if rightmost start > leftmost end then all   intervals are not aligned and it is not   possible to cover all of them */  if (rightMostStart > leftMostEnd)  res = -1;  // if x is in between rightmoststart and   // leftmostend then no need to travel any distance  else if (rightMostStart <= x && x <= leftMostEnd)  res = 0;    // choose minimum according to current position x   else  res = (x < rightMostStart) ? (rightMostStart - x) :  (x - leftMostEnd);    return res; } // Driver code to test above methods int main() {  int x = 3;  Interval intervals[] = {{0 7} {2 14} {4 6}};  int N = sizeof(intervals) / sizeof(intervals[0]);  int res = minDistanceToCoverIntervals(intervals N x);  if (res == -1)  cout << 'Not Possible to cover all intervalsn';  else  cout << res << endl; } 
Java
// Java program to find minimum distance  // to travel to cover all intervals import java.util.*; class GFG{   // Structure to store an interval static class Interval {  int start end;  Interval(int start int end)  {  this.start = start;  this.end = end;  } }; // Method returns minimum distance to // travel to cover all intervals static int minDistanceToCoverIntervals(Interval intervals[]   int N int x) {  int rightMostStart = Integer.MIN_VALUE;  int leftMostEnd = Integer.MAX_VALUE;    // Looping over all intervals to get   // right most start and left most end  for(int i = 0; i < N; i++)  {  if (rightMostStart < intervals[i].start)  rightMostStart = intervals[i].start;  if (leftMostEnd > intervals[i].end)  leftMostEnd = intervals[i].end;  }    int res;  // If rightmost start > leftmost end then   // all intervals are not aligned and it   // is not possible to cover all of them   if (rightMostStart > leftMostEnd)  res = -1;    // If x is in between rightmoststart and   // leftmostend then no need to travel   // any distance  else if (rightMostStart <= x &&   x <= leftMostEnd)  res = 0;    // Choose minimum according to   // current position x   else  res = (x < rightMostStart) ?  (rightMostStart - x) :  (x - leftMostEnd);    return res; } // Driver code public static void main(String[] args) {  int x = 3;  Interval []intervals = { new Interval(0 7)   new Interval(2 14)  new Interval(4 6) };  int N = intervals.length;  int res = minDistanceToCoverIntervals(  intervals N x);    if (res == -1)  System.out.print('Not Possible to ' +   'cover all intervalsn');  else  System.out.print(res + 'n'); } } // This code is contributed by Rajput-Ji 
Python3
# Python program to find minimum distance to # travel to cover all intervals # Method returns minimum distance to travel # to cover all intervals def minDistanceToCoverIntervals(Intervals N x): rightMostStart = Intervals[0][0] leftMostStart = Intervals[0][1] # looping over all intervals to get right most # start and left most end for curr in Intervals: if rightMostStart < curr[0]: rightMostStart = curr[0] if leftMostStart > curr[1]: leftMostStart = curr[1] # if rightmost start > leftmost end then all # intervals are not aligned and it is not # possible to cover all of them if rightMostStart > leftMostStart: res = -1 # if x is in between rightmoststart and # leftmostend then no need to travel any distance else if rightMostStart <= x and x <= leftMostStart: res = 0 # choose minimum according to current position x else: res = rightMostStart-x if x < rightMostStart else x-leftMostStart return res # Driver code to test above methods Intervals = [[0 7] [2 14] [4 6]] N = len(Intervals) x = 3 res = minDistanceToCoverIntervals(Intervals N x) if res == -1: print('Not Possible to cover all intervals') else: print(res) # This code is contributed by rj13to. 
C#
// C# program to find minimum distance  // to travel to cover all intervals using System; class GFG{   // Structure to store an interval public class Interval {  public int start end;    public Interval(int start int end)  {  this.start = start;  this.end = end;  } }; // Method returns minimum distance to // travel to cover all intervals static int minDistanceToCoverIntervals(  Interval []intervals int N int x) {  int rightMostStart = int.MinValue;  int leftMostEnd = int.MaxValue;    // Looping over all intervals to get   // right most start and left most end  for(int i = 0; i < N; i++)  {  if (rightMostStart < intervals[i].start)  rightMostStart = intervals[i].start;  if (leftMostEnd > intervals[i].end)  leftMostEnd = intervals[i].end;  }    int res;  // If rightmost start > leftmost end then   // all intervals are not aligned and it   // is not possible to cover all of them   if (rightMostStart > leftMostEnd)  res = -1;    // If x is in between rightmoststart and   // leftmostend then no need to travel   // any distance  else if (rightMostStart <= x &&   x <= leftMostEnd)  res = 0;    // Choose minimum according to   // current position x   else  res = (x < rightMostStart) ?  (rightMostStart - x) :  (x - leftMostEnd);    return res; } // Driver code public static void Main(String[] args) {  int x = 3;  Interval []intervals = { new Interval(0 7)   new Interval(2 14)  new Interval(4 6) };  int N = intervals.Length;  int res = minDistanceToCoverIntervals(  intervals N x);    if (res == -1)  Console.Write('Not Possible to ' +   'cover all intervalsn');  else  Console.Write(res + 'n'); } } // This code is contributed by shikhasingrajput  
JavaScript
<script> // JavaScript program to find minimum distance to // travel to cover all intervals // Method returns minimum distance to travel // to cover all intervals function minDistanceToCoverIntervals(Intervals N x){  let rightMostStart = Intervals[0][0]  let leftMostStart = Intervals[0][1]  // looping over all intervals to get right most  // start and left most end  for(let curr of Intervals){  if(rightMostStart < curr[0])  rightMostStart = curr[0]  if(leftMostStart > curr[1])  leftMostStart = curr[1]  }  let res;  // if rightmost start > leftmost end then all  // intervals are not aligned and it is not  // possible to cover all of them  if(rightMostStart > leftMostStart)  res = -1    // if x is in between rightmoststart and  // leftmostend then no need to travel any distance  else if(rightMostStart <= x && x <= leftMostStart)  res = 0    // choose minimum according to current position x  else  res = (x < rightMostStart)?rightMostStart-x : x-leftMostStart  return res } // Driver code to test above methods let Intervals = [[0 7] [2 14] [4 6]] let N = Intervals.length let x = 3 let res = minDistanceToCoverIntervals(Intervals N x) if(res == -1)  document.write('Not Possible to cover all intervals''  
'
) else document.write(res) // This code is contributed by shinjanpatra </script>

Ausgabe: 

1

Zeitkomplexität: AN)

Hilfsraum: AN)
 

Quiz erstellen