#practiceLinkDiv { display: none !important; }Bei einem Array arr[] mit N ganzzahligen Elementen besteht die Aufgabe darin, die Summe des Durchschnitts aller Teilmengen dieses Arrays zu ermitteln.
Palindromzahl
Beispiel:
Input : arr[] = [2 3 5]Recommended Practice Summe des Durchschnitts aller Teilmengen Probieren Sie es aus!
Output : 23.33
Explanation : Subsets with their average are
[2] average = 2/1 = 2
[3] average = 3/1 = 3
[5] average = 5/1 = 5
[2 3] average = (2+3)/2 = 2.5
[2 5] average = (2+5)/2 = 3.5
[3 5] average = (3+5)/2 = 4
[2 3 5] average = (2+3+5)/3 = 3.33
Sum of average of all subset is
2 + 3 + 5 + 2.5 + 3.5 + 4 + 3.33 = 23.33
Naiver Ansatz: Eine naive Lösung besteht darin, alle möglichen Teilmengen zu durchlaufen und eine zu erhalten Durchschnitt von allen und fügen Sie sie dann einzeln hinzu, aber das wird exponentiell Zeit in Anspruch nehmen und ist für größere Arrays nicht durchführbar.
Wir können ein Muster erkennen, indem wir ein Beispiel nehmen
arr = [a0 a1 a2 a3]
sum of average =
a0/1 + a1/1 + a2/2 + a3/1 +
(a0+a1)/2 + (a0+a2)/2 + (a0+a3)/2 + (a1+a2)/2 +
(a1+a3)/2 + (a2+a3)/2 +
(a0+a1+a2)/3 + (a0+a2+a3)/3 + (a0+a1+a3)/3 +
(a1+a2+a3)/3 +
(a0+a1+a2+a3)/4
If S = (a0+a1+a2+a3) then above expression
can be rearranged as below
sum of average = (S)/1 + (3*S)/2 + (3*S)/3 + (S)/4
Der Koeffizient mit Zählern kann wie folgt erklärt werden. Angenommen, wir iterieren über Teilmengen mit K Elementen, dann ist der Nenner K und der Zähler r*S, wobei „r“ angibt, wie oft ein bestimmtes Array-Element hinzugefügt wird, während über Teilmengen derselben Größe iteriert wird. Bei näherer Betrachtung können wir sehen, dass r nCr(N - 1 n - 1) sein wird, da wir nach der Platzierung eines Elements in der Summation (n – 1) Elemente aus (N – 1) Elementen auswählen müssen, damit jedes Element eine Häufigkeit von nCr(N – 1 n – 1) hat. Dabei werden Teilmengen gleicher Größe berücksichtigt, da alle Elemente gleich oft an der Summierung teilnehmen. Dies ergibt auch die Häufigkeit von S und ist der Zähler im endgültigen Ausdruck.
Im folgenden Code nCr wird mithilfe einer dynamischen Programmiermethode implementiert Mehr dazu können Sie hier lesen
C++// C++ program to get sum of average of all subsets #include using namespace std; // Returns value of Binomial Coefficient C(n k) int nCr(int n int k) { int C[n + 1][k + 1]; int i j; // Calculate value of Binomial Coefficient in bottom // up manner for (i = 0; i <= n; i++) { for (j = 0; j <= min(i k); j++) { // Base Cases if (j == 0 || j == i) C[i][j] = 1; // Calculate value using previously stored // values else C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; } } return C[n][k]; } // method returns sum of average of all subsets double resultOfAllSubsets(int arr[] int N) { double result = 0.0; // Initialize result // Find sum of elements int sum = 0; for (int i = 0; i < N; i++) sum += arr[i]; // looping once for all subset of same size for (int n = 1; n <= N; n++) /* each element occurs nCr(N-1 n-1) times while considering subset of size n */ result += (double)(sum * (nCr(N - 1 n - 1))) / n; return result; } // Driver code to test above methods int main() { int arr[] = { 2 3 5 7 }; int N = sizeof(arr) / sizeof(int); cout << resultOfAllSubsets(arr N) << endl; return 0; }
Java // java program to get sum of // average of all subsets import java.io.*; class GFG { // Returns value of Binomial // Coefficient C(n k) static int nCr(int n int k) { int C[][] = new int[n + 1][k + 1]; int i j; // Calculate value of Binomial // Coefficient in bottom up manner for (i = 0; i <= n; i++) { for (j = 0; j <= Math.min(i k); j++) { // Base Cases if (j == 0 || j == i) C[i][j] = 1; // Calculate value using // previously stored values else C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; } } return C[n][k]; } // method returns sum of average of all subsets static double resultOfAllSubsets(int arr[] int N) { // Initialize result double result = 0.0; // Find sum of elements int sum = 0; for (int i = 0; i < N; i++) sum += arr[i]; // looping once for all subset of same size for (int n = 1; n <= N; n++) /* each element occurs nCr(N-1 n-1) times while considering subset of size n */ result += (double)(sum * (nCr(N - 1 n - 1))) / n; return result; } // Driver code to test above methods public static void main(String[] args) { int arr[] = { 2 3 5 7 }; int N = arr.length; System.out.println(resultOfAllSubsets(arr N)); } } // This code is contributed by vt_m
C# // C# program to get sum of // average of all subsets using System; class GFG { // Returns value of Binomial // Coefficient C(n k) static int nCr(int n int k) { int[ ] C = new int[n + 1 k + 1]; int i j; // Calculate value of Binomial // Coefficient in bottom up manner for (i = 0; i <= n; i++) { for (j = 0; j <= Math.Min(i k); j++) { // Base Cases if (j == 0 || j == i) C[i j] = 1; // Calculate value using // previously stored values else C[i j] = C[i - 1 j - 1] + C[i - 1 j]; } } return C[n k]; } // method returns sum of average // of all subsets static double resultOfAllSubsets(int[] arr int N) { // Initialize result double result = 0.0; // Find sum of elements int sum = 0; for (int i = 0; i < N; i++) sum += arr[i]; // looping once for all subset // of same size for (int n = 1; n <= N; n++) /* each element occurs nCr(N-1 n-1) times while considering subset of size n */ result += (double)(sum * (nCr(N - 1 n - 1))) / n; return result; } // Driver code to test above methods public static void Main() { int[] arr = { 2 3 5 7 }; int N = arr.Length; Console.WriteLine(resultOfAllSubsets(arr N)); } } // This code is contributed by Sam007
JavaScript <script> // javascript program to get sum of // average of all subsets // Returns value of Binomial // Coefficient C(n k) function nCr(n k) { let C = new Array(n + 1); for (let i = 0; i <= n; i++) { C[i] = new Array(k + 1); for (let j = 0; j <= k; j++) { C[i][j] = 0; } } let i j; // Calculate value of Binomial // Coefficient in bottom up manner for (i = 0; i <= n; i++) { for (j = 0; j <= Math.min(i k); j++) { // Base Cases if (j == 0 || j == i) C[i][j] = 1; // Calculate value using // previously stored values else C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; } } return C[n][k]; } // method returns sum of average of all subsets function resultOfAllSubsets(arr N) { // Initialize result let result = 0.0; // Find sum of elements let sum = 0; for (let i = 0; i < N; i++) sum += arr[i]; // looping once for all subset of same size for (let n = 1; n <= N; n++) /* each element occurs nCr(N-1 n-1) times while considering subset of size n */ result += (sum * (nCr(N - 1 n - 1))) / n; return result; } let arr = [ 2 3 5 7 ]; let N = arr.length; document.write(resultOfAllSubsets(arr N)); </script>
PHP // PHP program to get sum // of average of all subsets // Returns value of Binomial // Coefficient C(n k) function nCr($n $k) { $C[$n + 1][$k + 1] = 0; $i; $j; // Calculate value of Binomial // Coefficient in bottom up manner for ($i = 0; $i <= $n; $i++) { for ($j = 0; $j <= min($i $k); $j++) { // Base Cases if ($j == 0 || $j == $i) $C[$i][$j] = 1; // Calculate value using // previously stored values else $C[$i][$j] = $C[$i - 1][$j - 1] + $C[$i - 1][$j]; } } return $C[$n][$k]; } // method returns sum of // average of all subsets function resultOfAllSubsets($arr $N) { // Initialize result $result = 0.0; // Find sum of elements $sum = 0; for ($i = 0; $i < $N; $i++) $sum += $arr[$i]; // looping once for all // subset of same size for ($n = 1; $n <= $N; $n++) /* each element occurs nCr(N-1 n-1) times while considering subset of size n */ $result += (($sum * (nCr($N - 1 $n - 1))) / $n); return $result; } // Driver Code $arr = array( 2 3 5 7 ); $N = sizeof($arr) / sizeof($arr[0]); echo resultOfAllSubsets($arr $N) ; // This code is contributed by nitin mittal. ?> Python3 # Python3 program to get sum # of average of all subsets # Returns value of Binomial # Coefficient C(n k) def nCr(n k): C = [[0 for i in range(k + 1)] for j in range(n + 1)] # Calculate value of Binomial # Coefficient in bottom up manner for i in range(n + 1): for j in range(min(i k) + 1): # Base Cases if (j == 0 or j == i): C[i][j] = 1 # Calculate value using # previously stored values else: C[i][j] = C[i-1][j-1] + C[i-1][j] return C[n][k] # Method returns sum of # average of all subsets def resultOfAllSubsets(arr N): result = 0.0 # Initialize result # Find sum of elements sum = 0 for i in range(N): sum += arr[i] # looping once for all subset of same size for n in range(1 N + 1): # each element occurs nCr(N-1 n-1) times while # considering subset of size n */ result += (sum * (nCr(N - 1 n - 1))) / n return result # Driver code arr = [2 3 5 7] N = len(arr) print(resultOfAllSubsets(arr N)) # This code is contributed by Anant Agarwal.
Ausgabe
63.75
Zeitkomplexität: An3)
Hilfsraum: An2)
Effizienter Ansatz: Raumoptimierung O(1)
Um die räumliche Komplexität des oben genannten Ansatzes zu optimieren, können wir einen effizienteren Ansatz verwenden, der die Notwendigkeit der gesamten Matrix vermeidet C[][] um Binomialkoeffizienten zu speichern. Stattdessen können wir bei Bedarf eine Kombinationsformel verwenden, um den Binomialkoeffizienten direkt zu berechnen.
Umsetzungsschritte:
- Iterieren Sie über die Elemente des Arrays und berechnen Sie die Summe aller Elemente.
- Iterieren Sie über jede Teilmengengröße von 1 bis N.
- Berechnen Sie innerhalb der Schleife die Durchschnitt der Summe der Elemente multipliziert mit dem Binomialkoeffizienten für die Teilmengengröße. Addieren Sie den berechneten Durchschnitt zum Ergebnis.
- Gibt das Endergebnis zurück.
Durchführung:
C++#include using namespace std; // Method to calculate binomial coefficient C(n k) int binomialCoeff(int n int k) { int res = 1; // Since C(n k) = C(n n-k) if (k > n - k) k = n - k; // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1] for (int i = 0; i < k; i++) { res *= (n - i); res /= (i + 1); } return res; } // Method to calculate the sum of the average of all subsets double resultOfAllSubsets(int arr[] int N) { double result = 0.0; int sum = 0; // Calculate the sum of elements for (int i = 0; i < N; i++) sum += arr[i]; // Loop for each subset size for (int n = 1; n <= N; n++) result += (double)(sum * binomialCoeff(N - 1 n - 1)) / n; return result; } // Driver code to test the above methods int main() { int arr[] = { 2 3 5 7 }; int N = sizeof(arr) / sizeof(int); cout << resultOfAllSubsets(arr N) << endl; return 0; }
Java import java.util.Arrays; public class Main { // Method to calculate binomial coefficient C(n k) static int binomialCoeff(int n int k) { int res = 1; // Since C(n k) = C(n n-k) if (k > n - k) k = n - k; // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1] for (int i = 0; i < k; i++) { res *= (n - i); res /= (i + 1); } return res; } // Method to calculate the sum of the average of all subsets static double resultOfAllSubsets(int arr[] int N) { double result = 0.0; int sum = 0; // Calculate the sum of elements for (int i = 0; i < N; i++) sum += arr[i]; // Loop for each subset size for (int n = 1; n <= N; n++) result += (double) (sum * binomialCoeff(N - 1 n - 1)) / n; return result; } // Driver code to test the above methods public static void main(String[] args) { int arr[] = {2 3 5 7}; int N = arr.length; System.out.println(resultOfAllSubsets(arr N)); } }
C# using System; public class MainClass { // Method to calculate binomial coefficient C(n k) static int BinomialCoeff(int n int k) { int res = 1; // Since C(n k) = C(n n-k) if (k > n - k) k = n - k; // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1] for (int i = 0; i < k; i++) { res *= (n - i); res /= (i + 1); } return res; } // Method to calculate the sum of the average of all subsets static double ResultOfAllSubsets(int[] arr int N) { double result = 0.0; int sumVal = 0; // Calculate the sum of elements for (int i = 0; i < N; i++) sumVal += arr[i]; // Loop for each subset size for (int n = 1; n <= N; n++) result += (double)(sumVal * BinomialCoeff(N - 1 n - 1)) / n; return result; } // Driver code to test the above methods public static void Main() { int[] arr = { 2 3 5 7 }; int N = arr.Length; Console.WriteLine(ResultOfAllSubsets(arr N)); } }
JavaScript // Function to calculate binomial coefficient C(n k) function binomialCoeff(n k) { let res = 1; // Since C(n k) = C(n n-k) if (k > n - k) k = n - k; // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1] for (let i = 0; i < k; i++) { res *= (n - i); res /= (i + 1); } return res; } // Function to calculate the sum of the average of all subsets function resultOfAllSubsets(arr) { let result = 0.0; let sum = arr.reduce((acc val) => acc + val 0); // Loop for each subset size for (let n = 1; n <= arr.length; n++) { result += (sum * binomialCoeff(arr.length - 1 n - 1)) / n; } return result; } const arr = [2 3 5 7]; console.log(resultOfAllSubsets(arr));
Python3 # Method to calculate binomial coefficient C(n k) def binomialCoeff(n k): res = 1 # Since C(n k) = C(n n-k) if k > n - k: k = n - k # Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1] for i in range(k): res *= (n - i) res //= (i + 1) return res # Method to calculate the sum of the average of all subsets def resultOfAllSubsets(arr N): result = 0.0 sum_val = 0 # Calculate the sum of elements for i in range(N): sum_val += arr[i] # Loop for each subset size for n in range(1 N + 1): result += (sum_val * binomialCoeff(N - 1 n - 1)) / n return result # Driver code to test the above methods arr = [2 3 5 7] N = len(arr) print(resultOfAllSubsets(arr N))
Ausgabe
63.75 Zeitkomplexität: O(n^2)
Hilfsraum: O(1)