Baumsortierung ist ein Sortieralgorithmus, der auf basiert Binärer Suchbaum Datenstruktur. Es erstellt zunächst einen binären Suchbaum aus den Elementen der Eingabeliste oder des Eingabearrays und führt dann eine In-Order-Traversierung des erstellten binären Suchbaums durch, um die Elemente in sortierter Reihenfolge zu erhalten.
Algorithmus:
Schritt 1: Übernehmen Sie die Eingabeelemente in ein Array.Schritt 2: Erstellen Sie einen binären Suchbaum, indem Sie Datenelemente aus dem Array in das einfügen binärer Suchbaum .Schritt 3: Führen Sie eine Durchquerung des Baums in der richtigen Reihenfolge durch, um die Elemente in sortierter Reihenfolge zu erhalten.Anwendungen der Baumsortierung:
- Am häufigsten wird es verwendet, um die Elemente online zu bearbeiten: Nach jeder Installation steht ein Satz bisher gesehener Objekte in einem strukturierten Programm zur Verfügung.
 - Wenn Sie einen Splay-Baum als binären Suchbaum verwenden, hat der resultierende Algorithmus (genannt Splaysort) die zusätzliche Eigenschaft, dass es sich um eine adaptive Sortierung handelt, was bedeutet, dass seine Arbeitszeit für virtuelle Eingaben schneller als O (n log n) ist.
 Nachfolgend finden Sie die Implementierung für den oben genannten Ansatz:
C++Java// C++ program to implement Tree Sort #includeusing namespace std; struct Node { int key; struct Node *left *right; }; // A utility function to create a new BST Node struct Node *newNode(int item) { struct Node *temp = new Node; temp->key = item; temp->left = temp->right = NULL; return temp; } // Stores inorder traversal of the BST // in arr[] void storeSorted(Node *root int arr[] int &i) { if (root != NULL) { storeSorted(root->left arr i); arr[i++] = root->key; storeSorted(root->right arr i); } } /* A utility function to insert a new Node with given key in BST */ Node* insert(Node* node int key) { /* If the tree is empty return a new Node */ if (node == NULL) return newNode(key); /* Otherwise recur down the tree */ if (key < node->key) node->left = insert(node->left key); else if (key > node->key) node->right = insert(node->right key); /* return the (unchanged) Node pointer */ return node; } // This function sorts arr[0..n-1] using Tree Sort void treeSort(int arr[] int n) { struct Node *root = NULL; // Construct the BST root = insert(root arr[0]); for (int i=1; i<n; i++) root = insert(root arr[i]); // Store inorder traversal of the BST // in arr[] int i = 0; storeSorted(root arr i); } // Driver Program to test above functions int main() { //create input array int arr[] = {5 4 7 2 11}; int n = sizeof(arr)/sizeof(arr[0]); treeSort(arr n); for (int i=0; i<n; i++) cout << arr[i] << ' '; return 0; } Python3// Java program to // implement Tree Sort class GFG { // Class containing left and // right child of current // node and key value class Node { int key; Node left right; public Node(int item) { key = item; left = right = null; } } // Root of BST Node root; // Constructor GFG() { root = null; } // This method mainly // calls insertRec() void insert(int key) { root = insertRec(root key); } /* A recursive function to insert a new key in BST */ Node insertRec(Node root int key) { /* If the tree is empty return a new node */ if (root == null) { root = new Node(key); return root; } /* Otherwise recur down the tree */ if (key < root.key) root.left = insertRec(root.left key); else if (key > root.key) root.right = insertRec(root.right key); /* return the root */ return root; } // A function to do // inorder traversal of BST void inorderRec(Node root) { if (root != null) { inorderRec(root.left); System.out.print(root.key + ' '); inorderRec(root.right); } } void treeins(int arr[]) { for(int i = 0; i < arr.length; i++) { insert(arr[i]); } } // Driver Code public static void main(String[] args) { GFG tree = new GFG(); int arr[] = {5 4 7 2 11}; tree.treeins(arr); tree.inorderRec(tree.root); } } // This code is contributed // by Vibin MC## Python3 program to # implement Tree Sort # Class containing left and # right child of current # node and key value class Node: def __init__(selfitem = 0): self.key = item self.leftself.right = NoneNone # Root of BST root = Node() root = None # This method mainly # calls insertRec() def insert(key): global root root = insertRec(root key) # A recursive function to # insert a new key in BST def insertRec(root key): # If the tree is empty # return a new node if (root == None): root = Node(key) return root # Otherwise recur # down the tree if (key < root.key): root.left = insertRec(root.left key) elif (key > root.key): root.right = insertRec(root.right key) # return the root return root # A function to do # inorder traversal of BST def inorderRec(root): if (root != None): inorderRec(root.left) print(root.key end = ' ') inorderRec(root.right) def treeins(arr): for i in range(len(arr)): insert(arr[i]) # Driver Code arr = [5 4 7 2 11] treeins(arr) inorderRec(root) # This code is contributed by shinjanpatraJavaScript// C# program to // implement Tree Sort using System; public class GFG { // Class containing left and // right child of current // node and key value public class Node { public int key; public Node left right; public Node(int item) { key = item; left = right = null; } } // Root of BST Node root; // Constructor GFG() { root = null; } // This method mainly // calls insertRec() void insert(int key) { root = insertRec(root key); } /* A recursive function to insert a new key in BST */ Node insertRec(Node root int key) { /* If the tree is empty return a new node */ if (root == null) { root = new Node(key); return root; } /* Otherwise recur down the tree */ if (key < root.key) root.left = insertRec(root.left key); else if (key > root.key) root.right = insertRec(root.right key); /* return the root */ return root; } // A function to do // inorder traversal of BST void inorderRec(Node root) { if (root != null) { inorderRec(root.left); Console.Write(root.key + ' '); inorderRec(root.right); } } void treeins(int []arr) { for(int i = 0; i < arr.Length; i++) { insert(arr[i]); } } // Driver Code public static void Main(String[] args) { GFG tree = new GFG(); int []arr = {5 4 7 2 11}; tree.treeins(arr); tree.inorderRec(tree.root); } } // This code is contributed by Rajput-Ji<script> // Javascript program to // implement Tree Sort // Class containing left and // right child of current // node and key value class Node { constructor(item) { this.key = item; this.left = this.right = null; } } // Root of BST let root = new Node(); root = null; // This method mainly // calls insertRec() function insert(key) { root = insertRec(root key); } /* A recursive function to insert a new key in BST */ function insertRec(root key) { /* If the tree is empty return a new node */ if (root == null) { root = new Node(key); return root; } /* Otherwise recur down the tree */ if (key < root.key) root.left = insertRec(root.left key); else if (key > root.key) root.right = insertRec(root.right key); /* return the root */ return root; } // A function to do // inorder traversal of BST function inorderRec(root) { if (root != null) { inorderRec(root.left); document.write(root.key + ' '); inorderRec(root.right); } } function treeins(arr) { for (let i = 0; i < arr.length; i++) { insert(arr[i]); } } // Driver Code let arr = [5 4 7 2 11]; treeins(arr); inorderRec(root); // This code is contributed // by Saurabh Jaiswal </script>
Ausgabe2 4 5 7 11Komplexitätsanalyse:
Durchschnittliche Fallzeitkomplexität: O(n log n) Das Hinzufügen eines Elements zu einem binären Suchbaum dauert im Durchschnitt O(log n) Zeit. Daher dauert das Hinzufügen von n Elementen O(n log n) Zeit
Zeitkomplexität im schlimmsten Fall: An2). Die zeitliche Komplexität der Baumsortierung im ungünstigsten Fall kann durch die Verwendung eines selbstausgleichenden binären Suchbaums wie Red Black Tree AVL Tree verbessert werden. Die Verwendung der selbstausgleichenden Binärbaum-Baumsortierung benötigt im schlimmsten Fall O(n log n) Zeit, um das Array zu sortieren.
Hilfsraum: An)