#practiceLinkDiv { display: none !important; }Finden Sie bei gegebenem Grenzwert die Summe aller geraden Terme in der Fibonacci-Folge unterhalb des gegebenen Grenzwerts.
Die ersten paar Begriffe von Fibonacci-Zahlen sind 1 1 2 3 5 8 13 21 34 55 89 144 233 ... (Gerade Zahlen sind hervorgehoben).
Beispiele:
Input : limit = 8 Output : 10 Explanation : 2 + 8 = 10 Input : limit = 400; Output : 188. Explanation : 2 + 8 + 34 + 144 = 188.
Eine einfache Lösung besteht darin, alle Fibonacci-Zahlen zu durchlaufen, während die nächste Zahl kleiner oder gleich dem angegebenen Grenzwert ist. Überprüfen Sie bei jeder Zahl, ob sie gerade ist. Wenn die Zahl gerade ist, addieren Sie sie zum Ergebnis.
Eine effiziente Lösung basiert auf dem Folgenden rekursive Formel für gerade Fibonacci-Zahlen
Recurrence for Even Fibonacci sequence is: EFn = 4EFn-1 + EFn-2 with seed values EF0 = 0 and EF1 = 2. EFn represents n'th term in Even Fibonacci sequence.
Verweisen Das Weitere Einzelheiten zur obigen Formel.
Wenn wir also über Fibonacci-Zahlen iterieren, erzeugen wir nur gerade Fibonacci-Zahlen.
// Find the sum of all the even-valued terms in // the Fibonacci sequence which do not exceed // given limit. #include using namespace std; // Returns sum of even Fibonacci numbers which are // less than or equal to given limit. int evenFibSum(int limit) { if (limit < 2) return 0; // Initialize first two even Fibonacci numbers // and their sum long long int ef1 = 0 ef2 = 2; long long int sum = ef1 + ef2; // calculating sum of even Fibonacci value while (ef2 <= limit) { // get next even value of Fibonacci sequence long long int ef3 = 4*ef2 + ef1; // If we go beyond limit we break loop if (ef3 > limit) break; // Move to next even number and update sum ef1 = ef2; ef2 = ef3; sum += ef2; } return sum; } // Driver code int main() { int limit = 400; cout << evenFibSum(limit); return 0; }
Java // Find the sum of all the even-valued terms in // the Fibonacci sequence which do not exceed // given limit. import java.io.*; class GFG { // Returns sum of even Fibonacci numbers which are // less than or equal to given limit. static int evenFibSum(int limit) { if (limit < 2) return 0; // Initialize first two even Fibonacci numbers // and their sum long ef1 = 0 ef2 = 2; long sum = ef1 + ef2; // calculating sum of even Fibonacci value while (ef2 <= limit) { // get next even value of Fibonacci sequence long ef3 = 4 * ef2 + ef1; // If we go beyond limit we break loop if (ef3 > limit) break; // Move to next even number and update sum ef1 = ef2; ef2 = ef3; sum += ef2; } return(int) sum; } // Driver code public static void main (String[] args) { int limit = 400; System.out.println(evenFibSum(limit)); } } // This code is contributed by vt_m.
Python3 # Find the sum of all the even-valued # terms in the Fibonacci sequence which # do not exceed given limit. # Returns sum of even Fibonacci numbers which # are less than or equal to given limit. def evenFibSum(limit) : if (limit < 2) : return 0 # Initialize first two even Fibonacci numbers # and their sum ef1 = 0 ef2 = 2 sm= ef1 + ef2 # calculating sum of even Fibonacci value while (ef2 <= limit) : # get next even value of Fibonacci # sequence ef3 = 4 * ef2 + ef1 # If we go beyond limit we break loop if (ef3 > limit) : break # Move to next even number and update # sum ef1 = ef2 ef2 = ef3 sm = sm + ef2 return sm # Driver code limit = 400 print(evenFibSum(limit)) # This code is contributed by Nikita Tiwari.
C# // C# program to Find the sum of all // the even-valued terms in the // Fibonacci sequence which do not // exceed given limit.given limit. using System; class GFG { // Returns sum of even Fibonacci // numbers which are less than or // equal to given limit. static int evenFibSum(int limit) { if (limit < 2) return 0; // Initialize first two even // Fibonacci numbers and their sum long ef1 = 0 ef2 = 2; long sum = ef1 + ef2; // calculating sum of even // Fibonacci value while (ef2 <= limit) { // get next even value of // Fibonacci sequence long ef3 = 4 * ef2 + ef1; // If we go beyond limit // we break loop if (ef3 > limit) break; // Move to next even number // and update sum ef1 = ef2; ef2 = ef3; sum += ef2; } return(int) sum; } // Driver code public static void Main () { int limit = 400; Console.Write(evenFibSum(limit)); } } // This code is contributed by Nitin Mittal.
PHP // Find the sum of all the // even-valued terms in the // Fibonacci sequence which // do not exceed given limit. // Returns sum of even Fibonacci // numbers which are less than or // equal to given limit. function evenFibSum($limit) { if ($limit < 2) return 0; // Initialize first two even // Fibonacci numbers and their sum $ef1 = 0; $ef2 = 2; $sum = $ef1 + $ef2; // calculating sum of // even Fibonacci value while ($ef2 <= $limit) { // get next even value of // Fibonacci sequence $ef3 = 4 * $ef2 + $ef1; // If we go beyond limit // we break loop if ($ef3 > $limit) break; // Move to next even number // and update sum $ef1 = $ef2; $ef2 = $ef3; $sum += $ef2; } return $sum; } // Driver code $limit = 400; echo(evenFibSum($limit)); // This code is contributed by Ajit. ?> JavaScript <script> // Javascript program to find the sum of all the even-valued terms in // the Fibonacci sequence which do not exceed // given limit. // Returns sum of even Fibonacci numbers which are // less than or equal to given limit. function evenFibSum(limit) { if (limit < 2) return 0; // Initialize first two even Fibonacci numbers // and their sum let ef1 = 0 ef2 = 2; let sum = ef1 + ef2; // calculating sum of even Fibonacci value while (ef2 <= limit) { // get next even value of Fibonacci sequence let ef3 = 4 * ef2 + ef1; // If we go beyond limit we break loop if (ef3 > limit) break; // Move to next even number and update sum ef1 = ef2; ef2 = ef3; sum += ef2; } return sum; } // Function call let limit = 400; document.write(evenFibSum(limit)); </script>
Ausgabe :
188
Zeitkomplexität: An)
Hilfsraum: O(1)
Spring-Boot-Architektur