#practiceLinkDiv { display: none !important; }Gegeben sind drei Zahlen ein b Und M Wo 1<=bm<=10^6 Und 'A' kann sehr groß sein und bis zu enthalten 10^6 Ziffern. Die Aufgabe besteht darin, zu finden (a^b)%m .
Beispiele:
Lesen Sie die CSV-Datei in Java
Input : a = 3 b = 2 m = 4 Output : 1 Explanation : (3^2)%4 = 9%4 = 1 Input : a = 987584345091051645734583954832576 b = 3 m = 11 Output: 10Recommended Practice Finden Sie (a^b)%m Probieren Sie es aus!
Dieses Problem basiert im Wesentlichen auf modularer Arithmetik. Wir können schreiben (a^b) % m als (a%m) * (a%m) * (a%m) * ... (a%m) b mal . Nachfolgend finden Sie einen Algorithmus zur Lösung dieses Problems:
- Da „a“ sehr groß ist, lesen Sie „a“ als Zeichenfolge.
- Jetzt versuchen wir, 'a' zu reduzieren. Wir nehmen Modulo von 'a' mal m, d.h. ans = a % m auf diese Weise jetzt ans=a%m liegt zwischen einem ganzzahligen Bereich von 1 bis 10^6, d. h. 1<= a%m <= 10^6.
- Jetzt multiplizieren Jahre von b-1 mal und nehmen Sie gleichzeitig den Mod des Zwischenmultiplikationsergebnisses mit m, weil die Zwischenmultiplikation von Jahre kann den Bereich einer Ganzzahl überschreiten und zu einer falschen Antwort führen.
// C++ program to find (a^b) mod m for a large 'a' #include using namespace std; // utility function to calculate a%m unsigned int aModM(string s unsigned int mod) { unsigned int number = 0; for (unsigned int i = 0; i < s.length(); i++) { // (s[i]-'0') gives the digit value and form // the number number = (number*10 + (s[i] - '0')); number %= mod; } return number; } // Returns find (a^b) % m unsigned int ApowBmodM(string &a unsigned int b unsigned int m) { // Find a%m unsigned int ans = aModM(a m); unsigned int mul = ans; // now multiply ans by b-1 times and take // mod with m for (unsigned int i=1; i<b; i++) ans = (ans*mul) % m; return ans; } // Driver program to run the case int main() { string a = '987584345091051645734583954832576'; unsigned int b=3 m=11; cout << ApowBmodM(a b m); return 0; }
Java // Java program to find (a^b) mod m for a large 'a' public class GFG { // utility function to calculate a%m static int aModM(String s int mod) { int number = 0; for (int i = 0; i < s.length(); i++) { // (s[i]-'0') gives the digit // value and form the number number = (number * 10 ); int x = Character.getNumericValue(s.charAt(i)); number = number + x; number %= mod; } return number; } // Returns find (a^b) % m static int ApowBmodM(String a int b int m) { // Find a%m int ans = aModM(a m); int mul = ans; // now multiply ans by b-1 times // and take mod with m for (int i = 1; i < b; i++) ans = (ans * mul) % m; return ans; } // Driver code public static void main(String args[]) { String a = '987584345091051645734583954832576'; int b = 3 m = 11; System.out.println(ApowBmodM(a b m)); } } // This code is contributed by Sam007
Python3 # Python program to find (a^b) mod m for a large 'a' def aModM(s mod): number = 0 # convert string s[i] to integer which gives # the digit value and form the number for i in range(len(s)): number = (number*10 + int(s[i])) number = number % m return number # Returns find (a^b) % m def ApowBmodM(a b m): # Find a%m ans = aModM(a m) mul = ans # now multiply ans by b-1 times and take # mod with m for i in range(1b): ans = (ans*mul) % m return ans # Driver program to run the case a = '987584345091051645734583954832576' b m = 3 11 print (ApowBmodM(a b m))
C# // C# program to find (a^b) mod m // for a large 'a' using System; class GFG { // utility function to calculate a%m static int aModM(string s int mod) { int number = 0; for (int i = 0; i < s.Length; i++) { // (s[i]-'0') gives the digit // value and form the number number = (number * 10 ); int x = (int)(s[i] - '0'); number = number + x; number %= mod; } return number; } // Returns find (a^b) % m static int ApowBmodM(string a int b int m) { // Find a%m int ans = aModM(a m); int mul = ans; // now multiply ans by b-1 times // and take mod with m for (int i = 1; i < b; i++) ans = (ans * mul) % m; return ans; } // Driver Code public static void Main() { string a = '987584345091051645734583954832576'; int b=3 m=11; Console.Write(ApowBmodM(a b m)); } } // This code is contributed by Sam007
PHP // PHP program to find (a^b) // mod m for a large 'a' // utility function to // calculate a%m function aModM($s $mod) { $number = 0; for ($i = 0; $i < strlen($s); $i++) { // (s[i]-'0') gives the digit // value and form the number $number = ($number * 10 + ($s[$i] - '0')); $number %= $mod; } return $number; } // Returns find (a^b) % m function ApowBmodM($a $b$m) { // Find a%m $ans = aModM($a $m); $mul = $ans; // now multiply ans by // b-1 times and take // mod with m for ($i = 1; $i < $b; $i++) $ans = ($ans * $mul) % $m; return $ans; } // Driver code $a = '987584345091051645734583954832576'; $b = 3; $m = 11; echo ApowBmodM($a $b $m); return 0; // This code is contributed by nitin mittal. ?> JavaScript <script> // JavaScript program to find (a^b) mod m // for a large 'a' // Utility function to calculate a%m function aModM(s mod) { let number = 0; for(let i = 0; i < s.length; i++) { // (s[i]-'0') gives the digit // value and form the number number = (number * 10 ); let x = (s[i] - '0'); number = number + x; number %= mod; } return number; } // Returns find (a^b) % m function ApowBmodM(a b m) { // Find a%m let ans = aModM(a m); let mul = ans; // Now multiply ans by b-1 times // and take mod with m for(let i = 1; i < b; i++) ans = (ans * mul) % m; return ans; } // Driver Code let a = '987584345091051645734583954832576'; let b = 3 m = 11; document.write(ApowBmodM(a b m)); // This code is contributed by souravghosh0416 </script>
Ausgabe
10
Zeitkomplexität: O(nur(a)+b)
Hilfsraum: O(1)
Effizienter Ansatz: Die obigen Multiplikationen können auf reduziert werden log b durch die Verwendung schnelle modulare Potenzierung wobei wir das Ergebnis durch die binäre Darstellung des Exponenten berechnen (B) . Wenn das gesetzte Bit ist 1 Wir multiplizieren den aktuellen Wert der Basis mit dem Ergebnis und quadrieren den Wert der Basis für jeden rekursiven Aufruf.
Rekursiver Code:
C++14// C++ program to find (a^b) mod m for a large 'a' with an // efficient approach. #include using namespace std; typedef long long ll; // Reduce the number B to a small number // using Fermat Little ll MOD(string num int mod) { ll res = 0; for (int i = 0; i < num.length(); i++) res = (res * 10 + num[i] - '0') % mod; return res; } ll ModExponent(ll a ll b ll m) { ll result; if (a == 0) return 0; else if (b == 0) return 1; else if (b & 1) { result = a % m; result = result * ModExponent(a b - 1 m); } else { result = ModExponent(a b / 2 m); result = ((result * result) % m + m) % m; } return (result % m + m) % m; } int main() { // String input as b is very large string a = '987584345091051645734583954832576'; // String input as b is very large ll b = 3; ll m = 11; ll remainderA = MOD(a m); cout << ModExponent(remainderA b m); return 0; }
Java // Java program to find (a^b) mod m for a large 'a' with an // efficient approach. public class GFG { // Reduce the number B to a small number // using Fermat Little static long MOD(String num long mod) { long res = 0; for (int i = 0; i < num.length(); i++) { res = (res * 10 + num.charAt(i) - '0') % mod; } return res; } // Calculate the ModExponent of the given large number // 'a' static long ModExponent(long a long b long m) { long result; if (a == 0) { return 0; } else if (b == 0) { return 1; } else if (b % 2 != 0) { result = a % m; result = result * ModExponent(a b - 1 m); } else { result = ModExponent(a b / 2 m); result = ((result * result) % m + m) % m; } return (result % m + m) % m; } public static void main(String[] args) { // String input as a is very large String a = '987584345091051645734583954832576'; long b = 3; long m = 11; long remainderA = MOD(a m); System.out.println(ModExponent(remainderA b m)); } } // The code is contributed by Gautam goel (gautamgoel962)
Python3 # Python3 program to find (a^b) mod m # for a large 'a' # Utility function to calculate a%m def MOD(s mod): res = 0 for i in range(len(s)): res = (res * 10 + int(s[i])) % mod return res # Returns find (a^b) % m def ModExponent(a b m): if (a == 0): return 0 elif (b == 0): return 1 elif (b % 2 != 0): result = a % m result = result * ModExponent(a b - 1 m) else: result = ModExponent(a b / 2 m) result = ((result * result) % m + m) % m return (result % m + m) % m # Driver Code a = '987584345091051645734583954832576' b = 3 m = 11 remainderA = MOD(a m) print(ModExponent(remainderA b m)) # This code is contributed by phasing17
C# // C# program to find (a^b) mod m for a large 'a' with an // efficient approach. using System; using System.Collections.Generic; public class GFG { // Reduce the number B to a small number // using Fermat Little static long MOD(string num long mod) { long res = 0; for (int i = 0; i < num.Length; i++) { res = (res * 10 + num[i] - '0') % mod; } return res; } // Calculate the ModExponent of the given large number // 'a' static long ModExponent(long a long b long m) { long result; if (a == 0) { return 0; } else if (b == 0) { return 1; } else if (b % 2 != 0) { result = a % m; result = result * ModExponent(a b - 1 m); } else { result = ModExponent(a b / 2 m); result = ((result * result) % m + m) % m; } return (result % m + m) % m; } // Driver Code public static void Main(string[] args) { // String input as a is very large string a = '987584345091051645734583954832576'; long b = 3; long m = 11; // Function Call long remainderA = MOD(a m); Console.WriteLine(ModExponent(remainderA b m)); } } // The code is contributed by phasing17
JavaScript <script> // JavaScript program to find (a^b) mod m // for a large 'a' // Utility function to calculate a%m function MOD(s mod) { var res = 0; for (var i = 0; i < s.length; i++) { res = (res * 10 + (s[i] - '0')) % mod; } return res; } // Returns find (a^b) % m function ModExponent(a b m) { var result; if (a == 0) { return 0; } else if (b == 0) { return 1; } else if (b % 2 != 0) { result = a % m; result = result * ModExponent(a b - 1 m); } else { result = ModExponent(a b / 2 m); result = ((result * result) % m + m) % m; } return (result % m + m) % m; } // Driver Code let a = '987584345091051645734583954832576'; let b = 3 m = 11; var remainderA = MOD(a m); document.write(ModExponent(remainderA b m)); // This code is contributed by shinjanpatra. </script>
Ausgabe
10
Zeitkomplexität: O(len(a)+ log b)
Hilfsraum: O(logb)
Platzsparender iterativer Code:
C++14// C++ program to find (a^b) mod m for a large 'a' #include using namespace std; typedef long long ll; // utility function to calculate a%m and b%m ll aModM(string s ll mod) { ll number = 0; for (ll i = 0; i < s.length(); i++) { // (s[i]-'0') gives the digit value and form // the number number = (number*10 + (s[i] - '0')); number %= mod; } return number; } // Returns find (a^b) % m ll ApowBmodM(ll x ll yll m) { ll res=1; while(y) { if(y&1) res=(res*x)%m; y=y>>1; x=((x*x)%m+m)%m; } return (res%m+m)%m; } // Driver program to run the case int main() { string a = '987584345091051645734583954832576'; ll b=3; ll m=11; // Find a%m ll x=aModM(am); cout << ApowBmodM(xbm); return 0; }
Java // Java program to find (a^b) mod m for a large 'a' import java.util.*; class GFG { // utility function to calculate a%m and b%m static long aModM(String s long mod) { long number = 0; for (int i = 0; i < s.length(); i++) { // (s[i]-'0') gives the digit value and form // the number number = (number * 10 + (s.charAt(i) - '0')); number %= mod; } return number; } // Returns find (a^b) % m static long ApowBmodM(long x long y long m) { long res = 1; while (y > 0) { if ((y & 1) != 0) res = (res * x) % m; y = y >> 1; x = ((x * x) % m + m) % m; } return (res % m + m) % m; } // Driver program to run the case public static void main(String[] args) { String a = '987584345091051645734583954832576'; long b = 3; long m = 11; // Find a%m long x = aModM(a m); System.out.println(ApowBmodM(x b m)); } } // This code is contributed by phasing17
Python3 # Python3 program to find (a^b) mod m for a large 'a' # utility function to calculate a%m and b%m def aModM(s mod): number = 0; for i in range(len(s)): # int(s[i]) gives the digit value and form # the number number = (number * 10 + int(s[i])); number %= mod; return number; # Returns find (a^b) % m def ApowBmodM(x y m): res = 1; while (y > 0): if (y & 1): res = (res * x) % m; y = y >> 1; x = ((x * x) % m + m) % m; return (res % m + m) % m; # Driver program to run the case a = '987584345091051645734583954832576'; b = 3; m = 11; # Find a%m x = aModM(a m); print(ApowBmodM(x b m)); # This code is contributed by phasing17
C# // C# program to find (a^b) mod m for a large 'a' using System; class GFG { // utility function to calculate a%m and b%m static long aModM(string s long mod) { long number = 0; for (int i = 0; i < s.Length; i++) { // (s[i]-'0') gives the digit value and form // the number number = (number * 10 + (s[i] - '0')); number %= mod; } return number; } // Returns find (a^b) % m static long ApowBmodM(long x long y long m) { long res = 1; while (y > 0) { if ((y & 1) != 0) res = (res * x) % m; y = y >> 1; x = ((x * x) % m + m) % m; } return (res % m + m) % m; } // Driver program to run the case public static void Main(string[] args) { string a = '987584345091051645734583954832576'; long b = 3; long m = 11; // Find a%m long x = aModM(a m); Console.WriteLine(ApowBmodM(x b m)); } } // This code is contributed by phasing17
JavaScript // JavaScript program to find (a^b) mod m for a large 'a' // utility function to calculate a%m and b%m function aModM(s mod) { let number = 0; for (var i = 0; i < s.length; i++) { // parseInt(s[i]) gives the digit value and form // the number number = (number * 10 + parseInt(s[i])); number %= mod; } return number; } // Returns find (a^b) % m function ApowBmodM(x y m) { let res = 1; while (y) { if (y & 1) res = (res * x) % m; y = y >> 1; x = ((x * x) % m + m) % m; } return (res % m + m) % m; } // Driver program to run the case let a = '987584345091051645734583954832576'; let b = 3; let m = 11; // Find a%m let x = aModM(a m); console.log(ApowBmodM(x b m)); // This code is contributed by phasing17
Ausgabe
10
Zeitkomplexität: O(len(a)+ log b)
Hilfsraum: O(1)
Fall: Wenn sowohl „a“ als auch „b“ sehr groß sind.
Volladdiererschaltung
Wir können den gleichen Ansatz auch implementieren, wenn beides der Fall ist 'A' Und 'B' war sehr groß. In diesem Fall hätten wir zuerst genommen gegen davon mit M mit unserem aModM Funktion. Dann geben Sie es an oben weiter ApowBmodM rekursive oder iterative Funktion, um das erforderliche Ergebnis zu erhalten.
Rekursiver Code:
C++14#include using namespace std; typedef long long ll; // Reduce the number B to a small number // using Fermat Little ll MOD(string numint mod) { ll res=0; for(int i=0;i<num.length();i++) res=(res*10+num[i]-'0')%mod; return res; } ll ModExponent(ll all bll m) { ll result; if(a==0) return 0; else if(b==0) return 1; else if(b&1) { result=a%m; result=result*ModExponent(ab-1m); } else{ result=ModExponent(ab/2m); result=((result%m)*(result%m))%m; } return (result%m+m)%m; } int main() { // String input as b is very large string a = '987584345091051645734583954832576'; // String input as b is very large string b = '467687655456765756453454365476765'; ll m = 1000000007; ll remainderA = MOD(am); ll remainderB = MOD(bm); cout << ModExponent(remainderA remainderB m); return 0; }
Java /*package whatever //do not write package name here */ import java.io.*; class GFG { // Reduce the number B to a small number // using Fermat Little. static long MOD(String numint mod) { long res = 0; for(int i = 0; i < num.length(); i++) { res = (res * 10 + num.charAt(i) - '0') % mod; } return res; } static long ModExponent(long along blong m){ long result = 0; if(a == 0) return 0; else if(b == 0) return 1; else if((b&1) == 1){ result = a % m; result = result*ModExponent(a b - 1 m); } else{ result = ModExponent(a b/2 m); result = ((result % m)*(result % m)) % m; } return (result % m + m) % m; } public static void main (String[] args) { // String input as b is very large String a = '987584345091051645734583954832576'; // String input as b is very large String b = '467687655456765756453454365476765'; int m = 1000000007; long remainderA = MOD(am); long remainderB = MOD(bm); System.out.println(ModExponent(remainderA remainderB m)); } } // This code is contributed by aadityapburujwale
Python3 # Python3 program to implement the approach # Reduce the number B to a small number # using Fermat Little def MOD(num mod): res = 0; for i in range(len(num)): res = (res * 10 + int(num[i])) % mod; return res; def ModExponent(a b m): if (a == 0): return 0; elif (b == 0): return 1; elif (b & 1): result = a % m; result = result * ModExponent(a b - 1 m); else: b = b // 2 result = ModExponent(a b m); result = ((result % m) * (result % m)) % m; return (result % m + m) % m; # String input as b is very large a = '987584345091051645734583954832576'; # String input as b is very large b = '467687655456765756453454365476765'; m = 1000000007; remainderA = (MOD(a m)); remainderB = (MOD(b m)); print(ModExponent(remainderA remainderB m)); # This code is contributed by phasing17
C# // C# program to implement the approach using System; using System.Collections.Generic; class GFG { // Reduce the number B to a small number // using Fermat Little. static long MOD(string num int mod) { long res = 0; for (int i = 0; i < num.Length; i++) { res = (res * 10 + num[i] - '0') % mod; } return res; } static long ModExponent(long a long b long m) { long result = 0; if (a == 0) return 0; else if (b == 0) return 1; else if ((b & 1) == 1) { result = a % m; result = result * ModExponent(a b - 1 m); } else { result = ModExponent(a b / 2 m); result = ((result % m) * (result % m)) % m; } return (result % m + m) % m; } public static void Main(string[] args) { // String input as b is very large string a = '987584345091051645734583954832576'; // String input as b is very large string b = '467687655456765756453454365476765'; int m = 1000000007; long remainderA = MOD(a m); long remainderB = MOD(b m); Console.WriteLine( ModExponent(remainderA remainderB m)); } } // This code is contributed by phasing17
JavaScript // JavaScript program to implement the approach // Reduce the number B to a small number // using Fermat Little function MOD(num mod) { let res = 0; for (var i = 0; i < num.length; i++) res = (res * 10 + parseInt(num[i])) % mod; return res; } function ModExponent(a b m) { let result; if (a == 0n) return 0n; else if (b == 0n) return 1n; else if (b & 1n) { result = a % m; result = result * ModExponent(a b - 1n m); } else { b = b / 2n - (b % 2n); result = ModExponent(a b m); result = ((result % m) * (result % m)) % m; } return (result % m + m) % m; } // String input as b is very large let a = '987584345091051645734583954832576'; // String input as b is very large let b = '467687655456765756453454365476765'; let m = 1000000007; let remainderA = BigInt(MOD(a m)); let remainderB = BigInt(MOD(b m)); console.log(ModExponent(remainderA remainderB BigInt(m))); // This code is contributed by phasing17
Ausgabe
546081867
Zeitkomplexität: O(len(a)+len(b)+log b)
Hilfsraum: O(logb)
Platzsparender iterativer Code:
C++14// C++ program to find (a^b) mod m for a large 'a' #include using namespace std; typedef long long ll; // utility function to calculate a%m and b%m ll aModM(string s ll mod) { ll number = 0; for (ll i = 0; i < s.length(); i++) { // (s[i]-'0') gives the digit value and form // the number number = (number * 10 + (s[i] - '0')); number %= mod; } return number; } // Returns find (a^b) % m ll ApowBmodM(string& a string& b ll m) { ll res = 1; // Find a%m ll x = aModM(a m); // Find b%m ll y = aModM(b m); while (y) { if (y & 1) res = (res * x) % m; y = y >> 1; x = ((x % m) * (x % m)) % m; } return (res % m + m) % m; } // Driver program to run the case int main() { string a = '987584345091051645734583954832576'; string b = '467687655456765756453454365476765'; ll m = 1000000007; cout << ApowBmodM(a b m); return 0; }
Java /*package whatever //do not write package name here */ import java.io.*; class GFG { // utility function to calculate a%m and b%m static long aModM(String s long mod){ long number = 0; for (int i = 0; i < s.length(); i++) { // (s.charAt(i)-'0') gives the digit value and form // the number number = (number * 10 + (s.charAt(i) - '0')); number %= mod; } return number; } // Returns find (a^b) % m static long ApowBmodM(String a String b long m) { long res = 1; // Find a%m long x = aModM(a m); // Find b%m long y = aModM(b m); while (y>0) { if ((y & 1)==1) res = (res * x) % m; y = y >> 1; x = ((x % m) * (x % m)) % m; } return (res % m + m) % m; } public static void main (String[] args) { String a = '987584345091051645734583954832576'; String b = '467687655456765756453454365476765'; long m = 1000000007; System.out.println(ApowBmodM(a b m)); } } // This code is contributed by aadityapburujwale
Python3 # Python3 program to find (a^b) mod m for a large 'a' # utility function to calculate a%m and b%m def aModM(s mod): number = 0 for i in range(len(s)): # (s[i]-'0') gives the digit value and form # the number number = (number * 10 + (int(s[i]))) number %= mod return number # Returns find (a^b) % m def ApowBmodM(a b m): res = 1 # Find a%m x = aModM(a m) # Find b%m y = aModM(b m) while (y > 0): if (y & 1): res = (res * x) % m y = y >> 1 x = ((x % m) * (x % m)) % m return (res % m + m) % m # Driver program to run the case a = '987584345091051645734583954832576' b = '467687655456765756453454365476765' m = 1000000007 print(ApowBmodM(a b m)) # This code is contributed by phasing17
JavaScript // JavaScript program to find (a^b) mod m for a large 'a' // utility function to calculate a%m and b%m function aModM(s mod) { let number = 0n; for (let i = 0; i < s.length; i++) { // (s[i]-'0') gives the digit value and form // the number number = (number * 10n + BigInt(parseInt(s[i]))); number %= mod; } return number; } // Returns find (a^b) % m function ApowBmodM(a b m) { let res = 1n; // Find a%m let x = BigInt(aModM(a m)); // Find b%m let y = BigInt(aModM(b m)); while (y > 0n) { if (y & 1n) res = (res * x) % m; y = y >> 1n; x = ((x % m) * (x % m)) % m; } return (res % m + m) % m; } // Driver program to run the case let a = '987584345091051645734583954832576'; let b = '467687655456765756453454365476765'; let m = 1000000007n; console.log(ApowBmodM(a b m)); // This code is contributed by phasing17
C# // C# program to find (a^b) mod m for a large 'a' using System; using System.Collections.Generic; class GFG { // utility function to calculate a%m and b%m static long aModM(string s long mod) { long number = 0; for (int i = 0; i < s.Length; i++) { // (s[i]-'0') gives the digit value and form // the number number = (number * 10 + (s[i] - '0')); number %= mod; } return number; } // Returns find (a^b) % m static long ApowBmodM(string a string b long m) { long res = 1; // Find a%m long x = aModM(a m); // Find b%m long y = aModM(b m); while (y != 0) { if ((y & 1) != 0) res = (res * x) % m; y = y >> 1; x = ((x % m) * (x % m)) % m; } return (res % m + m) % m; } // Driver program to run the case public static void Main(string[] args) { string a = '987584345091051645734583954832576'; string b = '467687655456765756453454365476765'; long m = 1000000007; Console.WriteLine(ApowBmodM(a b m)); } } // This code is contributed by phasing17
Ausgabe
546081867
Zeitkomplexität: O(len(a)+len(b)+ log b)
Hilfsraum: O(1)
Wenn Sie möchten GeeksforGeeks und gerne einen Beitrag leisten möchten, können Sie auch einen Artikel darüber schreiben write.geeksforgeeks.org oder senden Sie Ihren Artikel per E-Mail an [email protected].