logo

Finden Sie die Summe der Teiler aller Teiler einer natürlichen Zahl

Probieren Sie es bei GfG Practice aus ' title= #practiceLinkDiv { display: none !important; }

Gegeben sei eine natürliche Zahl N Die Aufgabe besteht darin, die Summe der Teiler aller Teiler von n zu ermitteln.

Beispiele:  

  Input :   n = 54   Output :   232 Divisors of 54 = 1 2 3 6 9 18 27 54. Sum of divisors of 1 2 3 6 9 18 27 54 are 1 3 4 12 13 39 40 120 respectively. Sum of divisors of all the divisors of 54 = 1 + 3 + 4 + 12 + 13 + 39 + 40 + 120 = 232.   Input :   n = 10   Output :   28 Divisors of 10 are 1 2 5 10 Sums of divisors of divisors are 1 3 6 18. Overall sum = 1 + 3 + 6 + 18 = 28
Recommended Practice Finden Sie die Summe der Teiler Probieren Sie es aus!

Mit der Tatsache, dass eine beliebige Zahl N kann als Produkt von Primfaktoren ausgedrückt werden N = S1k1x p2k2x ... wo p1P2... sind Primzahlen. 
Alle Teiler von n können als p ausgedrückt werden1Ax p2Bx ... wobei 0<= a <= k1 and 0 <= b <= k2. 
Jetzt ist die Summe der Teiler die Summe aller Potenzen von p1- P1P11.... P1k1multipliziert mit der ganzen Potenz von p2- P2P21.... P2k1 
Summe des Teilers von n 
= (S1x p2) + (S11x p2) +.....+ (S1k1x p2) +....+ (S1x p21) + (S11x p21) +.....+ (S1k1x p21) +.........+ 
   (P1x p2k2) + (S11x p2k2) +......+ (S1k1x p2k2). 
= (S1+ S11+...+ S1k1) x p2+ (S1+ S11+...+ S1k1) x p21+.......+ (S1+ S11+...+ S1k1) x p2k2
= (S1+ S11+...+ S1k1) x (S2+ S21+...+ S2k2).



Nun sind die Teiler eines beliebigen pAfür p als Primzahl sind pP1...... PA. Und die Summe der Teiler beträgt (S(a+1)- 1)/(p -1) sei durch f(p) definiert. 
Die Summe der Teiler aller Teiler ergibt sich also 
= (f(S1) + f(S11) +...+ f(S1k1)) x (f(S2) + f(S21) +...+ f(S2k2)).

Wenn wir also eine Zahl n durch Primfaktorzerlegung gegeben haben, können wir die Summe der Teiler aller Teiler ermitteln. Aber in diesem Problem wird uns gegeben, dass n das Produkt des Elements des Arrays ist. Finden Sie also die Primfaktorzerlegung jedes Elements und nutzen Sie die Tatsache aBx aC= ab+c.

Nachfolgend finden Sie die Umsetzung dieses Ansatzes:  

C++
// C++ program to find sum of divisors of all // the divisors of a natural number. #include   using namespace std; // Returns sum of divisors of all the divisors // of n int sumDivisorsOfDivisors(int n) {  // Calculating powers of prime factors and  // storing them in a map mp[].  map<int int> mp;  for (int j=2; j<=sqrt(n); j++)  {  int count = 0;  while (n%j == 0)  {  n /= j;  count++;  }  if (count)  mp[j] = count;  }  // If n is a prime number  if (n != 1)  mp[n] = 1;  // For each prime factor calculating (p^(a+1)-1)/(p-1)  // and adding it to answer.  int ans = 1;  for (auto it : mp)  {  int pw = 1;  int sum = 0;  for (int i=it.second+1; i>=1; i--)  {  sum += (i*pw);  pw *= it.first;  }  ans *= sum;  }  return ans; } // Driven Program int main() {  int n = 10;  cout << sumDivisorsOfDivisors(n);  return 0; } 
Java
// Java program to find sum of divisors of all  // the divisors of a natural number.  import java.util.HashMap; class GFG  {  // Returns sum of divisors of all the divisors  // of n  public static int sumDivisorsOfDivisors(int n)  {  // Calculating powers of prime factors and  // storing them in a map mp[].  HashMap<Integer Integer> mp = new HashMap<>();  for (int j = 2; j <= Math.sqrt(n); j++)   {  int count = 0;  while (n % j == 0)   {  n /= j;  count++;  }  if (count != 0)  mp.put(j count);  }  // If n is a prime number  if (n != 1)  mp.put(n 1);  // For each prime factor calculating (p^(a+1)-1)/(p-1)  // and adding it to answer.  int ans = 1;  for (HashMap.Entry<Integer Integer> entry : mp.entrySet())   {  int pw = 1;  int sum = 0;  for (int i = entry.getValue() + 1; i >= 1; i--)  {  sum += (i * pw);  pw *= entry.getKey();  }  ans *= sum;  }  return ans;  }  // Driver code  public static void main(String[] args)   {  int n = 10;  System.out.println(sumDivisorsOfDivisors(n));  } } // This code is contributed by // sanjeev2552 
Python3
# Python3 program to find sum of divisors  # of all the divisors of a natural number. import math as mt # Returns sum of divisors of all  # the divisors of n def sumDivisorsOfDivisors(n): # Calculating powers of prime factors  # and storing them in a map mp[]. mp = dict() for j in range(2 mt.ceil(mt.sqrt(n))): count = 0 while (n % j == 0): n //= j count += 1 if (count): mp[j] = count # If n is a prime number if (n != 1): mp[n] = 1 # For each prime factor calculating  # (p^(a+1)-1)/(p-1) and adding it to answer. ans = 1 for it in mp: pw = 1 summ = 0 for i in range(mp[it] + 1 0 -1): summ += (i * pw) pw *= it ans *= summ return ans # Driver Code n = 10 print(sumDivisorsOfDivisors(n)) # This code is contributed # by mohit kumar 29 
C#
// C# program to find sum of divisors of all  // the divisors of a natural number.  using System; using System.Collections.Generic;    class GFG  {  // Returns sum of divisors of   // all the divisors of n  public static int sumDivisorsOfDivisors(int n)  {  // Calculating powers of prime factors and  // storing them in a map mp[].  Dictionary<int   int> mp = new Dictionary<int  int>();  for (int j = 2; j <= Math.Sqrt(n); j++)   {  int count = 0;  while (n % j == 0)   {  n /= j;  count++;  }  if (count != 0)  mp.Add(j count);  }  // If n is a prime number  if (n != 1)  mp.Add(n 1);  // For each prime factor   // calculating (p^(a+1)-1)/(p-1)  // and adding it to answer.  int ans = 1;  foreach(KeyValuePair<int int> entry in mp)   {  int pw = 1;  int sum = 0;  for (int i = entry.Value + 1;   i >= 1; i--)  {  sum += (i * pw);  pw = entry.Key;  }  ans *= sum;  }  return ans;  }  // Driver code  public static void Main(String[] args)   {  int n = 10;  Console.WriteLine(sumDivisorsOfDivisors(n));  } } // This code is contributed // by Princi Singh 
JavaScript
<script> // Javascript program to find sum of divisors of all  // the divisors of a natural number.     // Returns sum of divisors of all the divisors  // of n  function sumDivisorsOfDivisors(n)  {  // Calculating powers of prime factors and  // storing them in a map mp[].  let mp = new Map();  for (let j = 2; j <= Math.sqrt(n); j++)   {  let count = 0;  while (n % j == 0)   {  n = Math.floor(n/j);  count++;  }  if (count != 0)  mp.set(j count);  }    // If n is a prime number  if (n != 1)  mp.set(n 1);    // For each prime factor calculating (p^(a+1)-1)/(p-1)  // and adding it to answer.  let ans = 1;    for (let [key value] of mp.entries())   {  let pw = 1;  let sum = 0;  for (let i = value + 1; i >= 1; i--)  {  sum += (i * pw);  pw = key;  }  ans *= sum;  }    return ans;  }    // Driver code  let n = 10;  document.write(sumDivisorsOfDivisors(n));     // This code is contributed by patel2127 </script> 

Ausgabe:  

28

Zeitkomplexität: O(?n log n) 
Hilfsraum: An)

Optimierungen: 
Für den Fall, dass es mehrere Eingaben gibt, für die wir den Wert ermitteln müssen, den wir verwenden können Sieb des Eratosthenes wie in besprochen Das Post.


 

Quiz erstellen