logo

Einführung in Disjunkte Menge (Union-Find-Algorithmus)

Was ist eine disjunkte Mengendatenstruktur?

Es werden zwei Mengen aufgerufen disjunkte Mengen Wenn sie kein gemeinsames Element haben, ist der Durchschnitt der Mengen eine Nullmenge.

Eine Datenstruktur, die nicht überlappende oder disjunkte Teilmengen von Elementen speichert, wird als disjunkte Mengendatenstruktur bezeichnet. Die disjunkte Mengendatenstruktur unterstützt folgende Operationen:



  • Hinzufügen neuer Mengen zur disjunkten Menge.
  • Disjunkte Mengen zu einer einzigen disjunkten Menge zusammenführen mit Union Betrieb.
  • Repräsentanten einer disjunkten Menge finden mit Finden Betrieb.
  • Überprüfen Sie, ob zwei Mengen disjunkt sind oder nicht.

Stellen Sie sich eine Situation mit mehreren Personen und den folgenden Aufgaben vor, die an ihnen ausgeführt werden müssen:

  • Füge hinzu ein neue Freundschaft Beziehung , d. h. eine Person x wird der Freund einer anderen Person y, d. h. sie fügt einer Menge ein neues Element hinzu.
  • Finden Sie heraus, ob individuell x ist ein Freund von Person y (direkter oder indirekter Freund)

Beispiele:

Uns werden 10 Personen gegeben, sagen wir: a, b, c, d, e, f, g, h, i, j



Folgende Beziehungen müssen hinzugefügt werden:
ein b
b d
cf
c ich
j e
g j

Bei Fragen wie „a ist ein Freund von d“ oder nicht. Grundsätzlich müssen wir die folgenden vier Gruppen erstellen und eine schnell zugängliche Verbindung zwischen den Gruppenelementen aufrechterhalten:
G1 = {a, b, d}
G2 = {c, f, i}
G3 = {e,g,j}
G4 = {h}

Finden Sie heraus, ob x und y zur selben Gruppe gehören oder nicht, d. h. um herauszufinden, ob x und y direkte/indirekte Freunde sind.

Aufteilung der Individuen in verschiedene Gruppen entsprechend der Gruppe, zu der sie gehören. Diese Methode ist als a bekannt Disjunkte Mengenvereinigung die eine Sammlung von unterhält Disjunkte Mengen und jede Menge wird durch eines ihrer Mitglieder repräsentiert.



Um die obige Frage zu beantworten, sind zwei wichtige Punkte zu berücksichtigen:

  • Wie löst man Mengen auf? Zunächst gehören alle Elemente zu unterschiedlichen Mengen. Nachdem wir die gegebenen Beziehungen bearbeitet haben, wählen wir ein Mitglied als a aus Vertreter . Es gibt viele Möglichkeiten, einen Vertreter auszuwählen. Eine einfache Möglichkeit besteht darin, mit dem größten Index auszuwählen.
  • Überprüfen Sie, ob 2 Personen in derselben Gruppe sind? Wenn die Vertreter zweier Personen gleich sind, werden sie Freunde.

Verwendete Datenstrukturen sind:

Array: Ein Array von ganzen Zahlen wird aufgerufen Elternteil[] . Wenn wir uns damit befassen N Elemente, das i-te Element des Arrays stellt das i-te Element dar. Genauer gesagt ist das i-te Element des Parent[]-Arrays das übergeordnete Element des i-ten Elements. Durch diese Beziehungen entstehen ein oder mehrere virtuelle Bäume.

Baum: es ist ein Disjunkte Menge . Wenn sich zwei Elemente im selben Baum befinden, befinden sie sich im selben Baum Disjunkte Menge . Der Wurzelknoten (oder der oberste Knoten) jedes Baums wird als bezeichnet Vertreter des Sets. Es gibt immer eine Single einzigartiger Vertreter jedes Satzes. Eine einfache Regel zur Identifizierung eines Repräsentanten lautet: Wenn „i“ der Repräsentant einer Menge ist, dann Parent[i] = i . Wenn i nicht der Repräsentant seiner Menge ist, kann es gefunden werden, indem man den Baum hinaufgeht, bis wir den Repräsentanten finden.

Operationen an disjunkten Mengendatenstrukturen:

  1. Finden
  2. Union

1. Finden Sie:

Kann durch rekursives Durchlaufen des übergeordneten Arrays implementiert werden, bis wir auf einen Knoten stoßen, der der übergeordnete Knoten von sich selbst ist.

C++




// Finds the representative of the set> // that i is an element of> > #include> using> namespace> std;> > int> find(>int> i)> > {> > >// If i is the parent of itself> >if> (parent[i] == i) {> > >// Then i is the representative of> >// this set> >return> i;> >}> >else> {> > >// Else if i is not the parent of> >// itself, then i is not the> >// representative of his set. So we> >// recursively call Find on its parent> >return> find(parent[i]);> >}> }> > // The code is contributed by Nidhi goel>

>

>

Java




// Finds the representative of the set> // that i is an element of> import> java.io.*;> > class> GFG {> > >static> int> find(>int> i)> > >{> > >// If i is the parent of itself> >if> (parent[i] == i) {> > >// Then i is the representative of> >// this set> >return> i;> >}> >else> {> > >// Else if i is not the parent of> >// itself, then i is not the> >// representative of his set. So we> >// recursively call Find on its parent> >return> find(parent[i]);> >}> >}> }> > // The code is contributed by Nidhi goel>

>

>

Python3




# Finds the representative of the set> # that i is an element of> > def> find(i):> > ># If i is the parent of itself> >if> (parent[i]>=>=> i):> > ># Then i is the representative of> ># this set> >return> i> >else>:> > ># Else if i is not the parent of> ># itself, then i is not the> ># representative of his set. So we> ># recursively call Find on its parent> >return> find(parent[i])> > ># The code is contributed by Nidhi goel>

>

>

C#




using> System;> > public> class> GFG{> > >// Finds the representative of the set> >// that i is an element of> >public> static> int> find(>int> i)> >{> > >// If i is the parent of itself> >if> (parent[i] == i) {> > >// Then i is the representative of> >// this set> >return> i;> >}> >else> {> > >// Else if i is not the parent of> >// itself, then i is not the> >// representative of his set. So we> >// recursively call Find on its parent> >return> find(parent[i]);> >}> >}> }>

>

>

Javascript




> // Finds the representative of the set> // that i is an element of> > function> find(i)> {> > >// If i is the parent of itself> >if> (parent[i] == i) {> > >// Then i is the representative of> >// this set> >return> i;> >}> >else> {> > >// Else if i is not the parent of> >// itself, then i is not the> >// representative of his set. So we> >// recursively call Find on its parent> >return> find(parent[i]);> >}> }> // The code is contributed by Nidhi goel> >

>

>

Zeitkomplexität : Dieser Ansatz ist ineffizient und kann im schlimmsten Fall O(n) Zeit in Anspruch nehmen.

2. Gewerkschaft:

Es braucht zwei Elemente als Eingabe und findet die Vertreter ihrer Mengen mithilfe von Finden Operation und platziert schließlich einen der Bäume (der die Menge darstellt) unter dem Wurzelknoten des anderen Baums.

C++




// Unites the set that includes i> // and the set that includes j> > #include> using> namespace> std;> > void> union>(>int> i,>int> j) {> > >// Find the representatives> >// (or the root nodes) for the set> >// that includes i> >int> irep =>this>.Find(i),> > >// And do the same for the set> >// that includes j> >int> jrep =>this>.Find(j);> > >// Make the parent of i’s representative> >// be j’s representative effectively> >// moving all of i’s set into j’s set)> >this>.Parent[irep] = jrep;> }>

>

>

Java




import> java.util.Arrays;> > public> class> UnionFind {> >private> int>[] parent;> > >public> UnionFind(>int> size) {> >// Initialize the parent array with each element as its own representative> >parent =>new> int>[size];> >for> (>int> i =>0>; i parent[i] = i; } } // Find the representative (root) of the set that includes element i public int find(int i) { if (parent[i] == i) { return i; // i is the representative of its own set } // Recursively find the representative of the parent until reaching the root parent[i] = find(parent[i]); // Path compression return parent[i]; } // Unite (merge) the set that includes element i and the set that includes element j public void union(int i, int j) { int irep = find(i); // Find the representative of set containing i int jrep = find(j); // Find the representative of set containing j // Make the representative of i's set be the representative of j's set parent[irep] = jrep; } public static void main(String[] args) { int size = 5; // Replace with your desired size UnionFind uf = new UnionFind(size); // Perform union operations as needed uf.union(1, 2); uf.union(3, 4); // Check if elements are in the same set boolean inSameSet = uf.find(1) == uf.find(2); System.out.println('Are 1 and 2 in the same set? ' + inSameSet); } }>

>

>

Python3




# Unites the set that includes i> # and the set that includes j> > def> union(parent, rank, i, j):> ># Find the representatives> ># (or the root nodes) for the set> ># that includes i> >irep>=> find(parent, i)> > ># And do the same for the set> ># that includes j> >jrep>=> find(parent, j)> > ># Make the parent of i’s representative> ># be j’s representative effectively> ># moving all of i’s set into j’s set)> > >parent[irep]>=> jrep>

>

>

C#




using> System;> > public> class> UnionFind> {> >private> int>[] parent;> > >public> UnionFind(>int> size)> >{> >// Initialize the parent array with each element as its own representative> >parent =>new> int>[size];> >for> (>int> i = 0; i { parent[i] = i; } } // Find the representative (root) of the set that includes element i public int Find(int i) { if (parent[i] == i) { return i; // i is the representative of its own set } // Recursively find the representative of the parent until reaching the root parent[i] = Find(parent[i]); // Path compression return parent[i]; } // Unite (merge) the set that includes element i and the set that includes element j public void Union(int i, int j) { int irep = Find(i); // Find the representative of set containing i int jrep = Find(j); // Find the representative of set containing j // Make the representative of i's set be the representative of j's set parent[irep] = jrep; } public static void Main() { int size = 5; // Replace with your desired size UnionFind uf = new UnionFind(size); // Perform union operations as needed uf.Union(1, 2); uf.Union(3, 4); // Check if elements are in the same set bool inSameSet = uf.Find(1) == uf.Find(2); Console.WriteLine('Are 1 and 2 in the same set? ' + inSameSet); } }>

>

>

Javascript




// JavaScript code for the approach> > // Unites the set that includes i> // and the set that includes j> function> union(parent, rank, i, j)> {> > // Find the representatives> // (or the root nodes) for the set> // that includes i> let irep = find(parent, i);> > // And do the same for the set> // that includes j> let jrep = find(parent, j);> > // Make the parent of i’s representative> // be j’s representative effectively> // moving all of i’s set into j’s set)> > parent[irep] = jrep;> }>

>

>

Zeitkomplexität : Dieser Ansatz ist ineffizient und könnte im schlimmsten Fall zu einem Baum der Länge O(n) führen.

Optimierungen (Vereinigung nach Rang/Größe und Pfadkomprimierung):

Die Effizienz hängt stark davon ab, welche Bäume aneinander befestigt werden . Es gibt zwei Möglichkeiten, dies zu tun. Erstens handelt es sich um „Vereinigung nach Rang“, bei der die Höhe des Baums als Faktor berücksichtigt wird, und zweitens um „Vereinigung nach Größe“, bei der die Größe des Baums als Faktor für die Verbindung eines Baums mit dem anderen berücksichtigt wird. Diese Methode sorgt zusammen mit der Pfadkomprimierung für eine Komplexität mit nahezu konstanter Zeit.

Pfadkomprimierung (Änderungen an Find()):

Es beschleunigt die Datenstruktur um Komprimierung der Höhe der Bäume. Dies kann durch Einfügen eines kleinen Caching-Mechanismus in das erreicht werden Finden Betrieb. Schauen Sie sich den Code für weitere Details an:

C++




// Finds the representative of the set that i> // is an element of.> > #include> using> namespace> std;> > int> find(>int> i)> {> > >// If i is the parent of itself> >if> (Parent[i] == i) {> > >// Then i is the representative> >return> i;> >}> >else> {> > >// Recursively find the representative.> >int> result = find(Parent[i]);> > >// We cache the result by moving i’s node> >// directly under the representative of this> >// set> >Parent[i] = result;> > >// And then we return the result> >return> result;> >}> }>

>

>

Java




// Finds the representative of the set that i> // is an element of.> import> java.io.*;> import> java.util.*;> > static> int> find(>int> i)> {> > >// If i is the parent of itself> >if> (Parent[i] == i) {> > >// Then i is the representative> >return> i;> >}> >else> {> > >// Recursively find the representative.> >int> result = find(Parent[i]);> > >// We cache the result by moving i’s node> >// directly under the representative of this> >// set> >Parent[i] = result;> > >// And then we return the result> >return> result;> >}> }> > // The code is contributed by Arushi jindal.>

>

>

Python3




# Finds the representative of the set that i> # is an element of.> > > def> find(i):> > ># If i is the parent of itself> >if> Parent[i]>=>=> i:> > ># Then i is the representative> >return> i> >else>:> > ># Recursively find the representative.> >result>=> find(Parent[i])> > ># We cache the result by moving i’s node> ># directly under the representative of this> ># set> >Parent[i]>=> result> > ># And then we return the result> >return> result> > # The code is contributed by Arushi Jindal.>

>

>

C#




diskrete mathematische Negation

using> System;> > // Finds the representative of the set that i> // is an element of.> public> static> int> find(>int> i)> {> > >// If i is the parent of itself> >if> (Parent[i] == i) {> > >// Then i is the representative> >return> i;> >}> >else> {> > >// Recursively find the representative.> >int> result = find(Parent[i]);> > >// We cache the result by moving i’s node> >// directly under the representative of this> >// set> >Parent[i] = result;> > >// And then we return the result> >return> result;> >}> }> > // The code is contributed by Arushi Jindal.>

>

>

Javascript




// Finds the representative of the set that i> // is an element of.> > > function> find(i)> {> > >// If i is the parent of itself> >if> (Parent[i] == i) {> > >// Then i is the representative> >return> i;> >}> >else> {> > >// Recursively find the representative.> >let result = find(Parent[i]);> > >// We cache the result by moving i’s node> >// directly under the representative of this> >// set> >Parent[i] = result;> > >// And then we return the result> >return> result;> >}> }> > // The code is contributed by Arushi Jindal.>

>

>

Zeitkomplexität : O(log n) im Durchschnitt pro Anruf.

Union nach Rang :

Zunächst benötigen wir ein neues Array von Ganzzahlen namens Rang[] . Die Größe dieses Arrays entspricht der des übergeordneten Arrays Elternteil[] . Wenn ich ein Vertreter einer Menge bin, Rang[i] ist die Höhe des Baums, der die Menge darstellt.
Denken Sie daran, dass es bei der Union-Operation keine Rolle spielt, welcher der beiden Bäume unter den anderen verschoben wird. Was wir nun tun wollen, ist, die Höhe des resultierenden Baums zu minimieren. Wenn wir zwei Bäume (oder Mengen) vereinen, nennen wir sie links und rechts, dann hängt alles davon ab Rang der Linken und das Rang des Rechts .

  • Wenn der Rang von links ist kleiner als der Rang von Rechts , dann ist es am besten, umzuziehen links unter rechts , da dies den Rang von rechts nicht ändert (während eine Bewegung nach rechts unter links die Höhe erhöhen würde). Wenn der Rang von rechts kleiner ist als der Rang von links, sollten wir uns auf die gleiche Weise von rechts nach links bewegen.
  • Wenn die Ränge gleich sind, spielt es keine Rolle, welcher Baum unter dem anderen liegt, aber der Rang des Ergebnisses ist immer um eins größer als der Rang der Bäume.

C++




// Unites the set that includes i and the set> // that includes j by rank> > #include> using> namespace> std;> > void> unionbyrank(>int> i,>int> j) {> > >// Find the representatives (or the root nodes)> >// for the set that includes i> >int> irep =>this>.find(i);> > >// And do the same for the set that includes j> >int> jrep =>this>.Find(j);> > >// Elements are in same set, no need to> >// unite anything.> >if> (irep == jrep)> >return>;> > >// Get the rank of i’s tree> >irank = Rank[irep],> > >// Get the rank of j’s tree> >jrank = Rank[jrep];> > >// If i’s rank is less than j’s rank> >if> (irank // Then move i under j this.parent[irep] = jrep; } // Else if j’s rank is less than i’s rank else if (jrank // Then move j under i this.Parent[jrep] = irep; } // Else if their ranks are the same else { // Then move i under j (doesn’t matter // which one goes where) this.Parent[irep] = jrep; // And increment the result tree’s // rank by 1 Rank[jrep]++; } }>

>

>

Java




public> class> DisjointSet {> > >private> int>[] parent;> >private> int>[] rank;> > >// Constructor to initialize the DisjointSet data> >// structure> >public> DisjointSet(>int> size)> >{> >parent =>new> int>[size];> >rank =>new> int>[size];> > >// Initialize each element as a separate set with> >// rank 0> >for> (>int> i =>0>; i parent[i] = i; rank[i] = 0; } } // Function to find the representative (or the root // node) of a set with path compression private int find(int i) { if (parent[i] != i) { parent[i] = find(parent[i]); // Path compression } return parent[i]; } // Unites the set that includes i and the set that // includes j by rank public void unionByRank(int i, int j) { // Find the representatives (or the root nodes) for // the set that includes i and j int irep = find(i); int jrep = find(j); // Elements are in the same set, no need to unite // anything if (irep == jrep) { return; } // Get the rank of i's tree int irank = rank[irep]; // Get the rank of j's tree int jrank = rank[jrep]; // If i's rank is less than j's rank if (irank // Move i under j parent[irep] = jrep; } // Else if j's rank is less than i's rank else if (jrank // Move j under i parent[jrep] = irep; } // Else if their ranks are the same else { // Move i under j (doesn't matter which one goes // where) parent[irep] = jrep; // Increment the result tree's rank by 1 rank[jrep]++; } } // Example usage public static void main(String[] args) { int size = 5; DisjointSet ds = new DisjointSet(size); // Perform some union operations ds.unionByRank(0, 1); ds.unionByRank(2, 3); ds.unionByRank(1, 3); // Find the representative of each element and print // the result for (int i = 0; i System.out.println( 'Element ' + i + ' belongs to the set with representative ' + ds.find(i)); } } }>

>

>

Python3




class> DisjointSet:> >def> __init__(>self>, size):> >self>.parent>=> [i>for> i>in> range>(size)]> >self>.rank>=> [>0>]>*> size> > ># Function to find the representative (or the root node) of a set> >def> find(>self>, i):> ># If i is not the representative of its set, recursively find the representative> >if> self>.parent[i] !>=> i:> >self>.parent[i]>=> self>.find(>self>.parent[i])># Path compression> >return> self>.parent[i]> > ># Unites the set that includes i and the set that includes j by rank> >def> union_by_rank(>self>, i, j):> ># Find the representatives (or the root nodes) for the set that includes i and j> >irep>=> self>.find(i)> >jrep>=> self>.find(j)> > ># Elements are in the same set, no need to unite anything> >if> irep>=>=> jrep:> >return> > ># Get the rank of i's tree> >irank>=> self>.rank[irep]> > ># Get the rank of j's tree> >jrank>=> self>.rank[jrep]> > ># If i's rank is less than j's rank> >if> irank # Move i under j self.parent[irep] = jrep # Else if j's rank is less than i's rank elif jrank # Move j under i self.parent[jrep] = irep # Else if their ranks are the same else: # Move i under j (doesn't matter which one goes where) self.parent[irep] = jrep # Increment the result tree's rank by 1 self.rank[jrep] += 1 def main(self): # Example usage size = 5 ds = DisjointSet(size) # Perform some union operations ds.union_by_rank(0, 1) ds.union_by_rank(2, 3) ds.union_by_rank(1, 3) # Find the representative of each element for i in range(size): print(f'Element {i} belongs to the set with representative {ds.find(i)}') # Creating an instance and calling the main method ds = DisjointSet(size=5) ds.main()>

>

>

C#




using> System;> > class> DisjointSet {> >private> int>[] parent;> >private> int>[] rank;> > >public> DisjointSet(>int> size) {> >parent =>new> int>[size];> >rank =>new> int>[size];> > >// Initialize each element as a separate set> >for> (>int> i = 0; i parent[i] = i; rank[i] = 0; } } // Function to find the representative (or the root node) of a set private int Find(int i) { // If i is not the representative of its set, recursively find the representative if (parent[i] != i) { parent[i] = Find(parent[i]); // Path compression } return parent[i]; } // Unites the set that includes i and the set that includes j by rank public void UnionByRank(int i, int j) { // Find the representatives (or the root nodes) for the set that includes i and j int irep = Find(i); int jrep = Find(j); // Elements are in the same set, no need to unite anything if (irep == jrep) { return; } // Get the rank of i's tree int irank = rank[irep]; // Get the rank of j's tree int jrank = rank[jrep]; // If i's rank is less than j's rank if (irank // Move i under j parent[irep] = jrep; } // Else if j's rank is less than i's rank else if (jrank // Move j under i parent[jrep] = irep; } // Else if their ranks are the same else { // Move i under j (doesn't matter which one goes where) parent[irep] = jrep; // Increment the result tree's rank by 1 rank[jrep]++; } } static void Main() { // Example usage int size = 5; DisjointSet ds = new DisjointSet(size); // Perform some union operations ds.UnionByRank(0, 1); ds.UnionByRank(2, 3); ds.UnionByRank(1, 3); // Find the representative of each element for (int i = 0; i Console.WriteLine('Element ' + i + ' belongs to the set with representative ' + ds.Find(i)); } } }>

>

>

Javascript




// JavaScript Program for the above approach> unionbyrank(i, j) {> let irep =>this>.find(i);>// Find representative of set including i> let jrep =>this>.find(j);>// Find representative of set including j> > if> (irep === jrep) {> return>;>// Elements are already in the same set> }> > let irank =>this>.rank[irep];>// Rank of set including i> let jrank =>this>.rank[jrep];>// Rank of set including j> > if> (irank this.parent[irep] = jrep; // Make j's representative parent of i's representative } else if (jrank this.parent[jrep] = irep; // Make i's representative parent of j's representative } else { this.parent[irep] = jrep; // Make j's representative parent of i's representative this.rank[jrep]++; // Increment the rank of the resulting set }>

>

>

Union nach Größe:

Auch hier benötigen wir ein neues Array von Ganzzahlen namens Größe[] . Die Größe dieses Arrays entspricht der des übergeordneten Arrays Elternteil[] . Wenn ich ein Vertreter einer Menge bin, Größe[i] ist die Anzahl der Elemente im Baum, die die Menge darstellen.
Jetzt vereinen wir zwei Bäume (oder Mengen), nennen wir sie links und rechts, dann hängt in diesem Fall alles davon ab Größe links und das Größe von rechts Baum (oder Menge).

  • Wenn die Größe von links ist kleiner als die Größe von Rechts , dann ist es am besten, umzuziehen links unter rechts und vergrößern Sie die rechte Seite um die linke Seite. Wenn die Größe von rechts kleiner als die Größe von links ist, sollten wir uns auf die gleiche Weise nach rechts unter links bewegen. und vergrößern Sie die linke Seite um die rechte Seite.
  • Bei gleicher Größe spielt es keine Rolle, welcher Baum unter den anderen kommt.

C++




// Unites the set that includes i and the set> // that includes j by size> > #include> using> namespace> std;> > void> unionBySize(>int> i,>int> j) {> > >// Find the representatives (or the root nodes)> >// for the set that includes i> >int> irep = find(i);> > >// And do the same for the set that includes j> >int> jrep = find(j);> > >// Elements are in the same set, no need to> >// unite anything.> >if> (irep == jrep)> >return>;> > >// Get the size of i’s tree> >int> isize = Size[irep];> > >// Get the size of j’s tree> >int> jsize = Size[jrep];> > >// If i’s size is less than j’s size> >if> (isize // Then move i under j Parent[irep] = jrep; // Increment j's size by i's size Size[jrep] += Size[irep]; } // Else if j’s size is less than i’s size else { // Then move j under i Parent[jrep] = irep; // Increment i's size by j's size Size[irep] += Size[jrep]; } }>

>

>

Java




// Java program for the above approach> import> java.util.Arrays;> > class> UnionFind {> > >private> int>[] Parent;> >private> int>[] Size;> > >public> UnionFind(>int> n)> >{> >// Initialize Parent array> >Parent =>new> int>[n];> >for> (>int> i =>0>; i Parent[i] = i; } // Initialize Size array with 1s Size = new int[n]; Arrays.fill(Size, 1); } // Function to find the representative (or the root // node) for the set that includes i public int find(int i) { if (Parent[i] != i) { // Path compression: Make the parent of i the // root of the set Parent[i] = find(Parent[i]); } return Parent[i]; } // Unites the set that includes i and the set that // includes j by size public void unionBySize(int i, int j) { // Find the representatives (or the root nodes) for // the set that includes i int irep = find(i); // And do the same for the set that includes j int jrep = find(j); // Elements are in the same set, no need to unite // anything. if (irep == jrep) return; // Get the size of i’s tree int isize = Size[irep]; // Get the size of j’s tree int jsize = Size[jrep]; // If i’s size is less than j’s size if (isize // Then move i under j Parent[irep] = jrep; // Increment j's size by i's size Size[jrep] += Size[irep]; } // Else if j’s size is less than i’s size else { // Then move j under i Parent[jrep] = irep; // Increment i's size by j's size Size[irep] += Size[jrep]; } } } public class GFG { public static void main(String[] args) { // Example usage int n = 5; UnionFind unionFind = new UnionFind(n); // Perform union operations unionFind.unionBySize(0, 1); unionFind.unionBySize(2, 3); unionFind.unionBySize(0, 4); // Print the representative of each element after // unions for (int i = 0; i System.out.println('Element ' + i + ': Representative = ' + unionFind.find(i)); } } } // This code is contributed by Susobhan Akhuli>

>

>

Python3




# Python program for the above approach> class> UnionFind:> >def> __init__(>self>, n):> ># Initialize Parent array> >self>.Parent>=> list>(>range>(n))> > ># Initialize Size array with 1s> >self>.Size>=> [>1>]>*> n> > ># Function to find the representative (or the root node) for the set that includes i> >def> find(>self>, i):> >if> self>.Parent[i] !>=> i:> ># Path compression: Make the parent of i the root of the set> >self>.Parent[i]>=> self>.find(>self>.Parent[i])> >return> self>.Parent[i]> > ># Unites the set that includes i and the set that includes j by size> >def> unionBySize(>self>, i, j):> ># Find the representatives (or the root nodes) for the set that includes i> >irep>=> self>.find(i)> > ># And do the same for the set that includes j> >jrep>=> self>.find(j)> > ># Elements are in the same set, no need to unite anything.> >if> irep>=>=> jrep:> >return> > ># Get the size of i’s tree> >isize>=> self>.Size[irep]> > ># Get the size of j’s tree> >jsize>=> self>.Size[jrep]> > ># If i’s size is less than j’s size> >if> isize # Then move i under j self.Parent[irep] = jrep # Increment j's size by i's size self.Size[jrep] += self.Size[irep] # Else if j’s size is less than i’s size else: # Then move j under i self.Parent[jrep] = irep # Increment i's size by j's size self.Size[irep] += self.Size[jrep] # Example usage n = 5 unionFind = UnionFind(n) # Perform union operations unionFind.unionBySize(0, 1) unionFind.unionBySize(2, 3) unionFind.unionBySize(0, 4) # Print the representative of each element after unions for i in range(n): print('Element {}: Representative = {}'.format(i, unionFind.find(i))) # This code is contributed by Susobhan Akhuli>

>

>

C#




using> System;> > class> UnionFind> {> >private> int>[] Parent;> >private> int>[] Size;> > >public> UnionFind(>int> n)> >{> >// Initialize Parent array> >Parent =>new> int>[n];> >for> (>int> i = 0; i { Parent[i] = i; } // Initialize Size array with 1s Size = new int[n]; for (int i = 0; i { Size[i] = 1; } } // Function to find the representative (or the root node) for the set that includes i public int Find(int i) { if (Parent[i] != i) { // Path compression: Make the parent of i the root of the set Parent[i] = Find(Parent[i]); } return Parent[i]; } // Unites the set that includes i and the set that includes j by size public void UnionBySize(int i, int j) { // Find the representatives (or the root nodes) for the set that includes i int irep = Find(i); // And do the same for the set that includes j int jrep = Find(j); // Elements are in the same set, no need to unite anything. if (irep == jrep) return; // Get the size of i’s tree int isize = Size[irep]; // Get the size of j’s tree int jsize = Size[jrep]; // If i’s size is less than j’s size if (isize { // Then move i under j Parent[irep] = jrep; // Increment j's size by i's size Size[jrep] += Size[irep]; } // Else if j’s size is less than i’s size else { // Then move j under i Parent[jrep] = irep; // Increment i's size by j's size Size[irep] += Size[jrep]; } } } class Program { static void Main() { // Example usage int n = 5; UnionFind unionFind = new UnionFind(n); // Perform union operations unionFind.UnionBySize(0, 1); unionFind.UnionBySize(2, 3); unionFind.UnionBySize(0, 4); // Print the representative of each element after unions for (int i = 0; i { Console.WriteLine($'Element {i}: Representative = {unionFind.Find(i)}'); } } }>

>

>

Javascript




unionbysize(i, j) {> >let irep =>this>.find(i);>// Find the representative of the set containing i.> >let jrep =>this>.find(j);>// Find the representative of the set containing j.> > >if> (irep === jrep) {> >return>;>// Elements are already in the same set.> >}> > >let isize =>this>.size[irep];>// Size of the set including i.> >let jsize =>this>.size[jrep];>// Size of the set including j.> > >if> (isize // If i's size is less than j's size, make i's representative // a child of j's representative. this.parent[irep] = jrep; this.size[jrep] += this.size[irep]; // Increment j's size by i's size. } else { // If j's size is less than or equal to i's size, make j's representative // a child of i's representative. this.parent[jrep] = irep; this.size[irep] += this.size[jrep]; // Increment i's size by j's size. if (isize === jsize) { // If sizes are equal, increment the rank of i's representative. this.rank[irep]++; } } }>

>

>

Ausgabe

Element 0: Representative = 0 Element 1: Representative = 0 Element 2: Representative = 2 Element 3: Representative = 2 Element 4: Representative = 0>

Zeitkomplexität : O(log n) ohne Pfadkomprimierung.

Nachfolgend finden Sie die vollständige Implementierung der disjunkten Menge mit Pfadkomprimierung und Vereinigung nach Rang.

C++




// C++ implementation of disjoint set> > #include> using> namespace> std;> > class> DisjSet {> >int> *rank, *parent, n;> > public>:> > >// Constructor to create and> >// initialize sets of n items> >DisjSet(>int> n)> >{> >rank =>new> int>[n];> >parent =>new> int>[n];> >this>->n = n;> >makeSet();> >}> > >// Creates n single item sets> >void> makeSet()> >{> >for> (>int> i = 0; i parent[i] = i; } } // Finds set of given item x int find(int x) { // Finds the representative of the set // that x is an element of if (parent[x] != x) { // if x is not the parent of itself // Then x is not the representative of // his set, parent[x] = find(parent[x]); // so we recursively call Find on its parent // and move i's node directly under the // representative of this set } return parent[x]; } // Do union of two sets by rank represented // by x and y. void Union(int x, int y) { // Find current sets of x and y int xset = find(x); int yset = find(y); // If they are already in same set if (xset == yset) return; // Put smaller ranked item under // bigger ranked item if ranks are // different if (rank[xset] parent[xset] = yset; } else if (rank[xset]>rank[yset]) { parent[yset] = xset; } // Wenn die Ränge gleich sind, dann erhöhe // den Rang. else { parent[yset] = xset; Rang[xset] = Rang[xset] + 1; } } }; // Treibercode int main() { // Funktionsaufruf DisjSet obj(5); obj.Union(0, 2); obj.Union(4, 2); obj.Union(3, 1); if (obj.find(4) == obj.find(0)) cout<< 'Yes '; else cout << 'No '; if (obj.find(1) == obj.find(0)) cout << 'Yes '; else cout << 'No '; return 0; }>

>

>

Java




// A Java program to implement Disjoint Set Data> // Structure.> import> java.io.*;> import> java.util.*;> > class> DisjointUnionSets {> >int>[] rank, parent;> >int> n;> > >// Constructor> >public> DisjointUnionSets(>int> n)> >{> >rank =>new> int>[n];> >parent =>new> int>[n];> >this>.n = n;> >makeSet();> >}> > >// Creates n sets with single item in each> >void> makeSet()> >{> >for> (>int> i =>0>; i // Initially, all elements are in // their own set. parent[i] = i; } } // Returns representative of x's set int find(int x) { // Finds the representative of the set // that x is an element of if (parent[x] != x) { // if x is not the parent of itself // Then x is not the representative of // his set, parent[x] = find(parent[x]); // so we recursively call Find on its parent // and move i's node directly under the // representative of this set } return parent[x]; } // Unites the set that includes x and the set // that includes x void union(int x, int y) { // Find representatives of two sets int xRoot = find(x), yRoot = find(y); // Elements are in the same set, no need // to unite anything. if (xRoot == yRoot) return; // If x's rank is less than y's rank if (rank[xRoot] // Then move x under y so that depth // of tree remains less parent[xRoot] = yRoot; // Else if y's rank is less than x's rank else if (rank[yRoot] // Then move y under x so that depth of // tree remains less parent[yRoot] = xRoot; else // if ranks are the same { // Then move y under x (doesn't matter // which one goes where) parent[yRoot] = xRoot; // And increment the result tree's // rank by 1 rank[xRoot] = rank[xRoot] + 1; } } } // Driver code public class Main { public static void main(String[] args) { // Let there be 5 persons with ids as // 0, 1, 2, 3 and 4 int n = 5; DisjointUnionSets dus = new DisjointUnionSets(n); // 0 is a friend of 2 dus.union(0, 2); // 4 is a friend of 2 dus.union(4, 2); // 3 is a friend of 1 dus.union(3, 1); // Check if 4 is a friend of 0 if (dus.find(4) == dus.find(0)) System.out.println('Yes'); else System.out.println('No'); // Check if 1 is a friend of 0 if (dus.find(1) == dus.find(0)) System.out.println('Yes'); else System.out.println('No'); } }>

>

>

Python3




# Python3 program to implement Disjoint Set Data> # Structure.> > class> DisjSet:> >def> __init__(>self>, n):> ># Constructor to create and> ># initialize sets of n items> >self>.rank>=> [>1>]>*> n> >self>.parent>=> [i>for> i>in> range>(n)]> > > ># Finds set of given item x> >def> find(>self>, x):> > ># Finds the representative of the set> ># that x is an element of> >if> (>self>.parent[x] !>=> x):> > ># if x is not the parent of itself> ># Then x is not the representative of> ># its set,> >self>.parent[x]>=> self>.find(>self>.parent[x])> > ># so we recursively call Find on its parent> ># and move i's node directly under the> ># representative of this set> > >return> self>.parent[x]> > > ># Do union of two sets represented> ># by x and y.> >def> Union(>self>, x, y):> > ># Find current sets of x and y> >xset>=> self>.find(x)> >yset>=> self>.find(y)> > ># If they are already in same set> >if> xset>=>=> yset:> >return> > ># Put smaller ranked item under> ># bigger ranked item if ranks are> ># different> >if> self>.rank[xset] <>self>.rank[yset]:> >self>.parent[xset]>=> yset> > >elif> self>.rank[xset]>>self>.rank[yset]:> >self>.parent[yset]>=> xset> > ># If ranks are same, then move y under> ># x (doesn't matter which one goes where)> ># and increment rank of x's tree> >else>:> >self>.parent[yset]>=> xset> >self>.rank[xset]>=> self>.rank[xset]>+> 1> > # Driver code> obj>=> DisjSet(>5>)> obj.Union(>0>,>2>)> obj.Union(>4>,>2>)> obj.Union(>3>,>1>)> if> obj.find(>4>)>=>=> obj.find(>0>):> >print>(>'Yes'>)> else>:> >print>(>'No'>)> if> obj.find(>1>)>=>=> obj.find(>0>):> >print>(>'Yes'>)> else>:> >print>(>'No'>)> > # This code is contributed by ng24_7.>

>

>

C#




// A C# program to implement> // Disjoint Set Data Structure.> using> System;> > class> DisjointUnionSets> {> >int>[] rank, parent;> >int> n;> > >// Constructor> >public> DisjointUnionSets(>int> n)> >{> >rank =>new> int>[n];> >parent =>new> int>[n];> >this>.n = n;> >makeSet();> >}> > >// Creates n sets with single item in each> >public> void> makeSet()> >{> >for> (>int> i = 0; i { // Initially, all elements are in // their own set. parent[i] = i; } } // Returns representative of x's set public int find(int x) { // Finds the representative of the set // that x is an element of if (parent[x] != x) { // if x is not the parent of itself // Then x is not the representative of // his set, parent[x] = find(parent[x]); // so we recursively call Find on its parent // and move i's node directly under the // representative of this set } return parent[x]; } // Unites the set that includes x and // the set that includes x public void union(int x, int y) { // Find representatives of two sets int xRoot = find(x), yRoot = find(y); // Elements are in the same set, // no need to unite anything. if (xRoot == yRoot) return; // If x's rank is less than y's rank if (rank[xRoot] // Then move x under y so that depth // of tree remains less parent[xRoot] = yRoot; // Else if y's rank is less than x's rank else if (rank[yRoot] // Then move y under x so that depth of // tree remains less parent[yRoot] = xRoot; else // if ranks are the same { // Then move y under x (doesn't matter // which one goes where) parent[yRoot] = xRoot; // And increment the result tree's // rank by 1 rank[xRoot] = rank[xRoot] + 1; } } } // Driver code class GFG { public static void Main(String[] args) { // Let there be 5 persons with ids as // 0, 1, 2, 3 and 4 int n = 5; DisjointUnionSets dus = new DisjointUnionSets(n); // 0 is a friend of 2 dus.union(0, 2); // 4 is a friend of 2 dus.union(4, 2); // 3 is a friend of 1 dus.union(3, 1); // Check if 4 is a friend of 0 if (dus.find(4) == dus.find(0)) Console.WriteLine('Yes'); else Console.WriteLine('No'); // Check if 1 is a friend of 0 if (dus.find(1) == dus.find(0)) Console.WriteLine('Yes'); else Console.WriteLine('No'); } } // This code is contributed by Rajput-Ji>

>

>

Javascript




class DisjSet {> >constructor(n) {> >this>.rank =>new> Array(n);> >this>.parent =>new> Array(n);> >this>.n = n;> >this>.makeSet();> >}> > >makeSet() {> >for> (let i = 0; i <>this>.n; i++) {> >this>.parent[i] = i;> >}> >}> > >find(x) {> >if> (>this>.parent[x] !== x) {> >this>.parent[x] =>this>.find(>this>.parent[x]);> >}> >return> this>.parent[x];> >}> > >Union(x, y) {> >let xset =>this>.find(x);> >let yset =>this>.find(y);> > >if> (xset === yset)>return>;> > >if> (>this>.rank[xset] <>this>.rank[yset]) {> >this>.parent[xset] = yset;> >}>else> if> (>this>.rank[xset]>>this>.rank[yset]) {> >this>.parent[yset] = xset;> >}>else> {> >this>.parent[yset] = xset;> >this>.rank[xset] =>this>.rank[xset] + 1;> >}> >}> }> > // usage example> let obj =>new> DisjSet(5);> obj.Union(0, 2);> obj.Union(4, 2);> obj.Union(3, 1);> > if> (obj.find(4) === obj.find(0)) {> >console.log(>'Yes'>);> }>else> {> >console.log(>'No'>);> }> if> (obj.find(1) === obj.find(0)) {> >console.log(>'Yes'>);> }>else> {> >console.log(>'No'>);> }>

>

>

Ausgabe

Yes No>

Zeitkomplexität : O(n) zum Erstellen von n einzelnen Elementmengen. Durch die beiden Techniken – Pfadkomprimierung und Vereinigung nach Rang/Größe – wird die Zeitkomplexität eine nahezu konstante Zeit erreichen. Es stellt sich heraus, dass das Finale amortisierte Zeitkomplexität ist O(α(n)), wobei α(n) die inverse Ackermann-Funktion ist, die sehr stetig wächst (sie überschreitet nicht einmal für n<10).600etwa).

Raumkomplexität: O(n), weil wir n Elemente in der disjunkten Mengendatenstruktur speichern müssen.