Zwei Zeichenfolgen gelten als vollständig, wenn sie bei der Verkettung alle 26 englischen Alphabete enthalten. Beispielsweise sind „abcdefghi“ und „jklmnopqrstuvwxyz“ vollständig, da sie zusammen alle Zeichen von „a“ bis „z“ enthalten.
abstrakte Klasse
Wir erhalten zwei Sätze der Größen n bzw. m und müssen die Anzahl der Paare ermitteln, die bei der Verkettung jeder Zeichenfolge aus Satz 1 mit jeder Zeichenfolge aus Satz 2 vollständig sind.
Input : set1[] = {'abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc'} set2[] = {'ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz'} Output : 7 The total complete pairs that are forming are: 'abcdefghijklmnopqrstuvwxyz' 'abcdefghabcdefghijklmnopqrstuvwxyz' 'abcdefghdefghijklmnopqrstuvwxyz' 'geeksforgeeksabcdefghijklmnopqrstuvwxyz' 'lmnopqrstabcdefghijklmnopqrstuvwxyz' 'abcabcdefghijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' Methode 1 (Naive Methode): Eine einfache Lösung besteht darin, alle Zeichenfolgenpaare zu verketten und dann mithilfe eines Häufigkeitsarrays zu prüfen, ob die verkettete Zeichenfolge alle Zeichen von „a“ bis „z“ enthält.
Durchführung:
C++// C++ implementation for find pairs of complete // strings. #include using namespace std; // Returns count of complete pairs from set[0..n-1] // and set2[0..m-1] int countCompletePairs(string set1[] string set2[] int n int m) { int result = 0; // Consider all pairs of both strings for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { // Create a concatenation of current pair string concat = set1[i] + set2[j]; // Compute frequencies of all characters // in the concatenated string. int frequency[26] = { 0 }; for (int k = 0; k < concat.length(); k++) frequency[concat[k] - 'a']++; // If frequency of any character is not // greater than 0 then this pair is not // complete. int i; for (i = 0; i < 26; i++) if (frequency[i] < 1) break; if (i == 26) result++; } } return result; } // Driver code int main() { string set1[] = { 'abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc' }; string set2[] = { 'ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz' }; int n = sizeof(set1) / sizeof(set1[0]); int m = sizeof(set2) / sizeof(set2[0]); cout << countCompletePairs(set1 set2 n m); return 0; }
Java // Java implementation for find pairs of complete // strings. class GFG { // Returns count of complete pairs from set[0..n-1] // and set2[0..m-1] static int countCompletePairs(String set1[] String set2[] int n int m) { int result = 0; // Consider all pairs of both strings for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { // Create a concatenation of current pair String concat = set1[i] + set2[j]; // Compute frequencies of all characters // in the concatenated String. int frequency[] = new int[26]; for (int k = 0; k < concat.length(); k++) { frequency[concat.charAt(k) - 'a']++; } // If frequency of any character is not // greater than 0 then this pair is not // complete. int k; for (k = 0; k < 26; k++) { if (frequency[k] < 1) { break; } } if (k == 26) { result++; } } } return result; } // Driver code static public void main(String[] args) { String set1[] = { 'abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc' }; String set2[] = { 'ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz' }; int n = set1.length; int m = set2.length; System.out.println(countCompletePairs(set1 set2 n m)); } } // This code is contributed by PrinciRaj19992
Python3 # Python3 implementation for find pairs of complete # strings. # Returns count of complete pairs from set[0..n-1] # and set2[0..m-1] def countCompletePairs(set1set2nm): result = 0 # Consider all pairs of both strings for i in range(n): for j in range(m): # Create a concatenation of current pair concat = set1[i] + set2[j] # Compute frequencies of all characters # in the concatenated String. frequency = [0 for i in range(26)] for k in range(len(concat)): frequency[ord(concat[k]) - ord('a')] += 1 # If frequency of any character is not # greater than 0 then this pair is not # complete. k = 0 while(k<26): if (frequency[k] < 1): break k += 1 if (k == 26): result += 1 return result # Driver code set1=['abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc'] set2=['ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz'] n = len(set1) m = len(set2) print(countCompletePairs(set1 set2 n m)) # This code is contributed by shinjanpatra
C# // C# implementation for find pairs of complete // strings. using System; class GFG { // Returns count of complete pairs from set[0..n-1] // and set2[0..m-1] static int countCompletePairs(string[] set1 string[] set2 int n int m) { int result = 0; // Consider all pairs of both strings for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { // Create a concatenation of current pair string concat = set1[i] + set2[j]; // Compute frequencies of all characters // in the concatenated String. int[] frequency = new int[26]; for (int k = 0; k < concat.Length; k++) { frequency[concat[k] - 'a']++; } // If frequency of any character is not // greater than 0 then this pair is not // complete. int l; for (l = 0; l < 26; l++) { if (frequency[l] < 1) { break; } } if (l == 26) { result++; } } } return result; } // Driver code static public void Main() { string[] set1 = { 'abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc' }; string[] set2 = { 'ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz' }; int n = set1.Length; int m = set2.Length; Console.Write(countCompletePairs(set1 set2 n m)); } } // This article is contributed by Ita_c.
JavaScript <script> // Javascript implementation for find pairs of complete // strings. // Returns count of complete pairs from set[0..n-1] // and set2[0..m-1] function countCompletePairs(set1set2nm) { let result = 0; // Consider all pairs of both strings for (let i = 0; i < n; i++) { for (let j = 0; j < m; j++) { // Create a concatenation of current pair let concat = set1[i] + set2[j]; // Compute frequencies of all characters // in the concatenated String. let frequency = new Array(26); for(let i= 0;i<26;i++) { frequency[i]=0; } for (let k = 0; k < concat.length; k++) { frequency[concat[k].charCodeAt(0) - 'a'.charCodeAt(0)]++; } // If frequency of any character is not // greater than 0 then this pair is not // complete. let k; for (k = 0; k < 26; k++) { if (frequency[k] < 1) { break; } } if (k == 26) { result++; } } } return result; } // Driver code let set1=['abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc']; let set2=['ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz'] let n = set1.length; let m=set2.length; document.write(countCompletePairs(set1 set2 n m)); // This code is contributed by avanitrachhadiya2155 </script>
Ausgabe
7
Zeitkomplexität: O(n * m * k)
Hilfsraum: O(1)
vollständige Form von i d e
Methode 2 (optimierte Methode mit Bit-Manipulation): Bei dieser Methode komprimieren wir das Frequenzarray in eine Ganzzahl. Wir weisen jedem Bit dieser Ganzzahl ein Zeichen zu und setzen es auf 1, wenn das Zeichen gefunden wird. Wir führen dies für alle Saiten in beiden Sätzen durch. Zum Schluss vergleichen wir einfach die beiden Ganzzahlen in den Mengen und wenn beim Kombinieren alle Bits gesetzt sind, bilden sie ein vollständiges Zeichenfolgenpaar.
Durchführung:
C++14// C++ program to find count of complete pairs #include using namespace std; // Returns count of complete pairs from set[0..n-1] // and set2[0..m-1] int countCompletePairs(string set1[] string set2[] int n int m) { int result = 0; // con_s1[i] is going to store an integer whose // set bits represent presence/absence of characters // in string set1[i]. // Similarly con_s2[i] is going to store an integer // whose set bits represent presence/absence of // characters in string set2[i] int con_s1[n] con_s2[m]; // Process all strings in set1[] for (int i = 0; i < n; i++) { // initializing all bits to 0 con_s1[i] = 0; for (int j = 0; j < set1[i].length(); j++) { // Setting the ascii code of char s[i][j] // to 1 in the compressed integer. con_s1[i] = con_s1[i] | (1 << (set1[i][j] - 'a')); } } // Process all strings in set2[] for (int i = 0; i < m; i++) { // initializing all bits to 0 con_s2[i] = 0; for (int j = 0; j < set2[i].length(); j++) { // setting the ascii code of char s[i][j] // to 1 in the compressed integer. con_s2[i] = con_s2[i] | (1 << (set2[i][j] - 'a')); } } // assigning a variable whose all 26 (0..25) // bits are set to 1 long long complete = (1 << 26) - 1; // Now consider every pair of integer in con_s1[] // and con_s2[] and check if the pair is complete. for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { // if all bits are set the strings are // complete! if ((con_s1[i] | con_s2[j]) == complete) result++; } } return result; } // Driver code int main() { string set1[] = { 'abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc' }; string set2[] = { 'ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz' }; int n = sizeof(set1) / sizeof(set1[0]); int m = sizeof(set2) / sizeof(set2[0]); cout << countCompletePairs(set1 set2 n m); return 0; }
Java // Java program to find count of complete pairs class GFG { // Returns count of complete pairs from set[0..n-1] // and set2[0..m-1] static int countCompletePairs(String set1[] String set2[] int n int m) { int result = 0; // con_s1[i] is going to store an integer whose // set bits represent presence/absence of characters // in string set1[i]. // Similarly con_s2[i] is going to store an integer // whose set bits represent presence/absence of // characters in string set2[i] int[] con_s1 = new int[n]; int[] con_s2 = new int[m]; // Process all strings in set1[] for (int i = 0; i < n; i++) { // initializing all bits to 0 con_s1[i] = 0; for (int j = 0; j < set1[i].length(); j++) { // Setting the ascii code of char s[i][j] // to 1 in the compressed integer. con_s1[i] = con_s1[i] | (1 << (set1[i].charAt(j) - 'a')); } } // Process all strings in set2[] for (int i = 0; i < m; i++) { // initializing all bits to 0 con_s2[i] = 0; for (int j = 0; j < set2[i].length(); j++) { // setting the ascii code of char s[i][j] // to 1 in the compressed integer. con_s2[i] = con_s2[i] | (1 << (set2[i].charAt(j) - 'a')); } } // assigning a variable whose all 26 (0..25) // bits are set to 1 long complete = (1 << 26) - 1; // Now consider every pair of integer in con_s1[] // and con_s2[] and check if the pair is complete. for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { // if all bits are set the strings are // complete! if ((con_s1[i] | con_s2[j]) == complete) { result++; } } } return result; } // Driver code public static void main(String args[]) { String set1[] = { 'abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc' }; String set2[] = { 'ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz' }; int n = set1.length; int m = set2.length; System.out.println(countCompletePairs(set1 set2 n m)); } } // This code contributed by Rajput-Ji
C# // C# program to find count of complete pairs using System; class GFG { // Returns count of complete pairs from set[0..n-1] // and set2[0..m-1] static int countCompletePairs(String[] set1 String[] set2 int n int m) { int result = 0; // con_s1[i] is going to store an integer whose // set bits represent presence/absence of characters // in string set1[i]. // Similarly con_s2[i] is going to store an integer // whose set bits represent presence/absence of // characters in string set2[i] int[] con_s1 = new int[n]; int[] con_s2 = new int[m]; // Process all strings in set1[] for (int i = 0; i < n; i++) { // initializing all bits to 0 con_s1[i] = 0; for (int j = 0; j < set1[i].Length; j++) { // Setting the ascii code of char s[i][j] // to 1 in the compressed integer. con_s1[i] = con_s1[i] | (1 << (set1[i][j] - 'a')); } } // Process all strings in set2[] for (int i = 0; i < m; i++) { // initializing all bits to 0 con_s2[i] = 0; for (int j = 0; j < set2[i].Length; j++) { // setting the ascii code of char s[i][j] // to 1 in the compressed integer. con_s2[i] = con_s2[i] | (1 << (set2[i][j] - 'a')); } } // assigning a variable whose all 26 (0..25) // bits are set to 1 long complete = (1 << 26) - 1; // Now consider every pair of integer in con_s1[] // and con_s2[] and check if the pair is complete. for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { // if all bits are set the strings are // complete! if ((con_s1[i] | con_s2[j]) == complete) { result++; } } } return result; } // Driver code public static void Main(String[] args) { String[] set1 = { 'abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc' }; String[] set2 = { 'ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz' }; int n = set1.Length; int m = set2.Length; Console.WriteLine(countCompletePairs(set1 set2 n m)); } } // This code has been contributed by 29AjayKumar
Python3 # Python3 program to find count of complete pairs # Returns count of complete pairs from set[0..n-1] # and set2[0..m-1] def countCompletePairs(set1 set2 n m): result = 0 # con_s1[i] is going to store an integer whose # set bits represent presence/absence of characters # in set1[i]. # Similarly con_s2[i] is going to store an integer # whose set bits represent presence/absence of # characters in set2[i] con_s1 con_s2 = [0] * n [0] * m # Process all strings in set1[] for i in range(n): # initializing all bits to 0 con_s1[i] = 0 for j in range(len(set1[i])): # Setting the ascii code of char s[i][j] # to 1 in the compressed integer. con_s1[i] = con_s1[i] | (1 << (ord(set1[i][j]) - ord('a'))) # Process all strings in set2[] for i in range(m): # initializing all bits to 0 con_s2[i] = 0 for j in range(len(set2[i])): # setting the ascii code of char s[i][j] # to 1 in the compressed integer. con_s2[i] = con_s2[i] | (1 << (ord(set2[i][j]) - ord('a'))) # assigning a variable whose all 26 (0..25) # bits are set to 1 complete = (1 << 26) - 1 # Now consider every pair of integer in con_s1[] # and con_s2[] and check if the pair is complete. for i in range(n): for j in range(m): # if all bits are set the strings are # complete! if ((con_s1[i] | con_s2[j]) == complete): result += 1 return result # Driver code if __name__ == '__main__': set1 = ['abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc'] set2 = ['ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz'] n = len(set1) m = len(set2) print(countCompletePairs(set1 set2 n m)) # This code is contributed by mohit kumar 29
JavaScript <script> // Javascript program to find count of complete pairs // Returns count of complete pairs from set[0..n-1] // and set2[0..m-1] function countCompletePairs(set1set2nm) { let result = 0; // con_s1[i] is going to store an integer whose // set bits represent presence/absence of characters // in string set1[i]. // Similarly con_s2[i] is going to store an integer // whose set bits represent presence/absence of // characters in string set2[i] let con_s1 = new Array(n); let con_s2 = new Array(m); // Process all strings in set1[] for (let i = 0; i < n; i++) { // initializing all bits to 0 con_s1[i] = 0; for (let j = 0; j < set1[i].length; j++) { // Setting the ascii code of char s[i][j] // to 1 in the compressed integer. con_s1[i] = con_s1[i] | (1 << (set1[i][j].charCodeAt(0) - 'a'.charCodeAt(0))); } } // Process all strings in set2[] for (let i = 0; i < m; i++) { // initializing all bits to 0 con_s2[i] = 0; for (let j = 0; j < set2[i].length; j++) { // setting the ascii code of char s[i][j] // to 1 in the compressed integer. con_s2[i] = con_s2[i] | (1 << (set2[i][j].charCodeAt(0) - 'a'.charCodeAt(0))); } } // assigning a variable whose all 26 (0..25) // bits are set to 1 let complete = (1 << 26) - 1; // Now consider every pair of integer in con_s1[] // and con_s2[] and check if the pair is complete. for (let i = 0; i < n; i++) { for (let j = 0; j < m; j++) { // if all bits are set the strings are // complete! if ((con_s1[i] | con_s2[j]) == complete) { result++; } } } return result; } // Driver code let set1=['abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc']; let set2=['ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz' ] let n = set1.length; let m = set2.length; document.write(countCompletePairs(set1 set2 n m)); // This code is contributed by avanitrachhadiya2155 </script>
Ausgabe
7
Zeitkomplexität: O(n*m) wobei n die Größe des ersten Satzes und m die Größe des zweiten Satzes ist.
Hilfsraum: An)
Dieser Artikel wurde verfasst von Rishabh Jain .