Gegeben eine Reihe von N ganze Zahlen. Die Aufgabe besteht darin, zu prüfen, ob aus allen gegebenen Elementen eine arithmetische Folge gebildet werden kann. Geben Sie nach Möglichkeit „Ja“ ein, andernfalls „Nein“.
Beispiele:
Eingabe: arr[] = {0 12 4 8}
Ausgabe : Ja
Ordnen Sie das gegebene Array als {0 4 8 12} neu an, was eine arithmetische Folge bildet.
Eingabe: arr[] = {12 40 11 20}
Ausgabe : NEIN
Sortieren verwenden - O(n Log n) Zeit
Die Idee besteht darin, das angegebene Array zu sortieren. Überprüfen Sie nach dem Sortieren, ob die Unterschiede zwischen aufeinanderfolgenden Elementen gleich sind oder nicht. Wenn alle Differenzen gleich sind, ist eine arithmetische Progression möglich. Bitte beziehen Sie sich auf - Programm zur Überprüfung der arithmetischen Progression für die Umsetzung dieses Ansatzes.
Zählsortierung verwenden – O(n) Zeit und O(n) Raum
Wir können den in Methode 3 benötigten Speicherplatz reduzieren, wenn das angegebene Array geändert werden kann.
- Finden Sie kleinste und zweitkleinste Elemente.
- Finden Sie d = second_smallest - kleinste
- Subtrahiere das kleinste Element von allen Elementen.
- Wenn nun das gegebene Array AP darstellt, sollten alle Elemente die Form i*d haben, wobei i zwischen 0 und n-1 variiert.
- Dividiere nacheinander alle reduzierten Elemente durch d. Wenn ein Element nicht durch d teilbar ist, wird „false“ zurückgegeben.
- Wenn das Array nun AP darstellt, muss es eine Permutation von Zahlen von 0 bis n-1 sein. Wir können dies leicht mithilfe der Zählsortierung überprüfen.
Nachfolgend finden Sie die Implementierung dieser Methode:
C++// C++ program to check if a given array // can form arithmetic progression #include using namespace std; // Checking if array is permutation // of 0 to n-1 using counting sort bool countingsort(int arr[] int n) { int count[n] = { 0 }; // Counting the frequency for (int i = 0; i < n; i++) { count[arr[i]]++; } // Check if each frequency is 1 only for (int i = 0; i <= n-1; i++) { if (count[i] != 1) return false; } return true; } // Returns true if a permutation of arr[0..n-1] // can form arithmetic progression bool checkIsAP(int arr[] int n) { int smallest = INT_MAX second_smallest = INT_MAX; for (int i = 0; i < n; i++) { // Find the smallest and // update second smallest if (arr[i] < smallest) { second_smallest = smallest; smallest = arr[i]; } // Find second smallest else if (arr[i] != smallest && arr[i] < second_smallest) second_smallest = arr[i]; } // Find the difference between smallest and second // smallest int diff = second_smallest - smallest; for (int i = 0; i < n; i++) { arr[i]=arr[i]-smallest; } for(int i=0;i<n;i++) { if(arr[i]%diff!=0) { return false; } else { arr[i]=arr[i]/diff; } } // If array represents AP it must be a // permutation of numbers from 0 to n-1. // Check this using counting sort. if(countingsort(arrn)) return true; else return false; } // Driven Program int main() { int arr[] = { 20 15 5 0 10 }; int n = sizeof(arr) / sizeof(arr[0]); (checkIsAP(arr n)) ? (cout << 'Yes' << endl) : (cout << 'No' << endl); return 0; // This code is contributed by Pushpesh Raj }
Java // Java program to check if a given array // can form arithmetic progression import java.io.*; class GFG { // Checking if array is permutation // of 0 to n-1 using counting sort static boolean countingsort(int arr[] int n) { int[] count = new int[n]; for(int i = 0; i < n; i++) count[i] = 0; // Counting the frequency for (int i = 0; i < n; i++) { count[arr[i]]++; } // Check if each frequency is 1 only for (int i = 0; i <= n-1; i++) { if (count[i] != 1) return false; } return true; } // Returns true if a permutation of arr[0..n-1] // can form arithmetic progression static boolean checkIsAP(int arr[] int n) { int smallest = Integer.MAX_VALUE second_smallest = Integer.MAX_VALUE ; for (int i = 0; i < n; i++) { // Find the smallest and // update second smallest if (arr[i] < smallest) { second_smallest = smallest; smallest = arr[i]; } // Find second smallest else if (arr[i] != smallest && arr[i] < second_smallest) second_smallest = arr[i]; } // Find the difference between smallest and second // smallest int diff = second_smallest - smallest; for (int i = 0; i < n; i++) { arr[i] = arr[i] - smallest; } for(int i = 0; i < n; i++) { if(arr[i] % diff != 0) { return false; } else { arr[i] = arr[i]/diff; } } // If array represents AP it must be a // permutation of numbers from 0 to n-1. // Check this using counting sort. if(countingsort(arrn)) return true; else return false; } // Driven Program public static void main (String[] args) { int arr[] = { 20 15 5 0 10 }; int n = arr.length; if(checkIsAP(arr n)) System.out.println('Yes'); else System.out.println('No'); } } // This code is contributed by Utkarsh
Python # Python program to check if a given array # can form arithmetic progression import sys # Checking if array is permutation # of 0 to n-1 using counting sort def countingsort( arr n): count = [0]*n; # Counting the frequency for i in range(0 n): count[arr[i]] += 1; # Check if each frequency is 1 only for i in range(0 n - 1): if (count[i] != 1): return False; return True; # Returns true if a permutation of arr[0..n-1] # can form arithmetic progression def checkIsAP( arr n): smallest = sys.maxsize; second_smallest = sys.maxsize; for i in range(0n): # Find the smallest and # update second smallest if (arr[i] < smallest) : second_smallest = smallest; smallest = arr[i]; # Find second smallest elif (arr[i] != smallest and arr[i] < second_smallest): second_smallest = arr[i]; # Find the difference between smallest and second # smallest diff = second_smallest - smallest; for i in range(0n): arr[i]=arr[i]-smallest; for i in range(0n): if(arr[i]%diff!=0): return False; else: arr[i]=(int)(arr[i]/diff); # If array represents AP it must be a # permutation of numbers from 0 to n-1. # Check this using counting sort. if(countingsort(arrn)): return True; else: return False; # Driven Program arr = [ 20 15 5 0 10 ]; n = len(arr); if(checkIsAP(arr n)): print('Yes'); else: print('NO'); # This code is contributed by ratiagrawal.
C# using System; class GFG { // Checking if array is permutation // of 0 to n-1 using counting sort static bool CountingSort(int[] arr int n) { // Counting the frequency int[] count = new int[n]; for (int i = 0; i < n; i++) { count[arr[i]]++; } // Check if each frequency is 1 only for (int i = 0; i <= n - 1; i++) { if (count[i] != 1) { return false; } } return true; }// Returns true if a permutation of arr[0..n-1] // can form arithmetic progression static bool CheckIsAP(int[] arr int n) {// Find the smallest and // update second smallest int smallest = int.MaxValue; int secondSmallest = int.MaxValue; for (int i = 0; i < n; i++) { if (arr[i] < smallest) { secondSmallest = smallest; smallest = arr[i]; } else if (arr[i] != smallest && arr[i] < secondSmallest) { secondSmallest = arr[i]; } } int diff = secondSmallest - smallest; for (int i = 0; i < n; i++) { arr[i] = arr[i] - smallest; } for (int i = 0; i < n; i++) { if (arr[i] % diff != 0) { return false; } else { arr[i] = arr[i] / diff; } } // If array represents AP it must be a // permutation of numbers from 0 to n-1. // Check this using counting sort. if (CountingSort(arr n)) { return true; } else { return false; } } // Driven Program static void Main(string[] args) { int[] arr = new int[] { 20 15 5 0 10 }; int n = arr.Length; Console.WriteLine(CheckIsAP(arr n) ? 'Yes' : 'No'); } }
JavaScript // Javascript program to check if a given array // can form arithmetic progression // Checking if array is permutation // of 0 to n-1 using counting sort function countingsort( arr n) { let count=new Array(n).fill(0); // Counting the frequency for (let i = 0; i < n; i++) { count[arr[i]]++; } // Check if each frequency is 1 only for (let i = 0; i <= n-1; i++) { if (count[i] != 1) return false; } return true; } // Returns true if a permutation of arr[0..n-1] // can form arithmetic progression function checkIsAP( arr n) { let smallest = Number.MAX_SAFE_INTEGER second_smallest = Number.MAX_SAFE_INTEGER; for (let i = 0; i < n; i++) { // Find the smallest and // update second smallest if (arr[i] < smallest) { second_smallest = smallest; smallest = arr[i]; } // Find second smallest else if (arr[i] != smallest && arr[i] < second_smallest) second_smallest = arr[i]; } // Find the difference between smallest and second // smallest let diff = second_smallest - smallest; for (let i = 0; i < n; i++) { arr[i]=arr[i]-smallest; } for(let i=0;i<n;i++) { if(arr[i]%diff!=0) { return false; } else { arr[i]=arr[i]/diff; } } // If array represents AP it must be a // permutation of numbers from 0 to n-1. // Check this using counting sort. if(countingsort(arrn)) return true; else return false; } // Driven Program let arr = [20 15 5 0 10 ]; let n = arr.length; (checkIsAP(arr n)) ? (console.log('Yesn')) : (console.log('Non')); // // This code was contributed by poojaagrawal2.
Ausgabe
Yes
Zeitkomplexität - O(n)
Hilfsraum - O(n)
Hashing mit Single Pass – O(n) Zeit und O(n) Raum
Die Grundidee besteht darin, die gemeinsame Differenz des AP zu ermitteln, indem das maximale und das minimale Element des Arrays ermittelt werden. Beginnen Sie anschließend mit dem Maximalwert und verringern Sie den Wert weiter um die gemeinsame Differenz. Überprüfen Sie außerdem, ob dieser neue Wert in der Hashmap vorhanden ist oder nicht. Wenn der Wert zu irgendeinem Zeitpunkt nicht im Hashset vorhanden ist, unterbrechen Sie die Schleife. Die ideale Situation nach dem Durchbrechen der Schleife ist, dass alle n Elemente abgedeckt wurden und wenn ja, dann true zurückgeben, andernfalls false zurückgeben.
C++// C++ program for above approach #include using namespace std; bool checkIsAP(int arr[] int n) { unordered_set<int> st; int maxi = INT_MIN; int mini = INT_MAX; for (int i=0;i<n;i++) { maxi = max(arr[i] maxi); mini = min(arr[i] mini); st.insert(arr[i]); } // FINDING THE COMMON DIFFERENCE int diff = (maxi - mini) / (n - 1); int count = 0; // CHECK TERMS OF AP PRESENT IN THE HASHSET while (st.find(maxi)!=st.end()) { count++; maxi = maxi - diff; } if (count == n) return true; return false; } // Driver Code int main() { int arr[] = { 0 12 4 8 }; int n = 4; cout << boolalpha << checkIsAP(arr n); return 0; } // This code is contributed by Rohit Pradhan
Java /*package whatever //do not write package name here */ import java.io.*; import java.util.*; class GFG { public static void main(String[] args) { int[] arr = { 0 12 4 8 }; int n = arr.length; System.out.println(checkIsAP(arr n)); } static boolean checkIsAP(int arr[] int n) { HashSet<Integer> set = new HashSet<Integer>(); int max = Integer.MIN_VALUE; int min = Integer.MAX_VALUE; for (int i : arr) { max = Math.max(i max); min = Math.min(i min); set.add(i); } // FINDING THE COMMON DIFFERENCE int diff = (max - min) / (n - 1); int count = 0; // CHECK IF TERMS OF AP PRESENT IN THE HASHSET while (set.contains(max)) { count++; max = max - diff; } if (count == arr.length) return true; return false; } }
Python import sys def checkIsAP(arr n): Set = set() Max = -sys.maxsize - 1 Min = sys.maxsize for i in arr: Max = max(i Max) Min = min(i Min) Set.add(i) # FINDING THE COMMON DIFFERENCE diff = (Max - Min) // (n - 1) count = 0 # CHECK IF TERMS OF AP PRESENT IN THE HASHSET while (Max in Set): count += 1 Max = Max - diff if (count == len(arr)): return True return False # driver code arr = [ 0 12 4 8 ] n = len(arr) print(checkIsAP(arr n)) # This code is contributed by shinjanpatra
C# using System; using System.Collections.Generic; public class GFG { // C# program for above approach static bool checkIsAP(int[] arr int n) { HashSet<int> st = new HashSet<int>(); int maxi = int.MinValue; int mini = int.MaxValue; for (int i = 0; i < n; i++) { maxi = Math.Max(arr[i] maxi); mini = Math.Min(arr[i] mini); st.Add(arr[i]); } // FINDING THE COMMON DIFFERENCE int diff = (maxi - mini) / (n - 1); int count = 0; // CHECK IF TERMS OF AP PRESENT IN THE HASHSET while (st.Contains(maxi)) { count++; maxi = maxi - diff; } if (count == n) { return true; } return false; } // Driver Code internal static void Main() { int[] arr = { 0 12 4 8 }; int n = 4; Console.Write(checkIsAP(arr n)); } // This code is contributed by Aarti_Rathi }
JavaScript function checkIsAP(arr n){ set = new Set() let Max = Number.MIN_VALUE let Min = Number.MAX_VALUE for(let i of arr){ Max = Math.max(i Max) Min = Math.min(i Min) set.add(i) } // FINDING THE COMMON DIFFERENCE let diff = Math.floor((Max - Min) / (n - 1)) let count = 0 // CHECK IF TERMS OF AP PRESENT IN THE HASHSET while (set.has(Max)){ count += 1 Max = Max - diff } if (count == arr.length) return true return false } // driver code let arr = [ 0 12 4 8 ] let n = arr.length console.log(checkIsAP(arr n))
Ausgabe
trueQuiz erstellen