Bei einem gegebenen ganzzahligen Array besteht die Aufgabe darin, ein ganzzahliges Array in zwei Unterarrays zu unterteilen, um deren Durchschnittswerte möglichst gleich zu machen.
Beispiele:
Zeichenfolge in Java
Input : arr[] = {1 5 7 2 0}; Output : (0 1) and (2 4) Subarrays arr[0..1] and arr[2..4] have same average. Input : arr[] = {4 3 5 9 11}; Output : Not possible A Naiver Ansatz besteht darin, zwei Schleifen auszuführen und Subarrays zu finden, deren Durchschnittswerte gleich sind.
Durchführung:
C++// Simple C++ program to find subarrays // whose averages are equal #include using namespace std; // Finding two subarrays // with equal average. void findSubarrays(int arr[] int n) { bool found = false; int lsum = 0; for (int i = 0; i < n - 1; i++) { lsum += arr[i]; int rsum = 0; for (int j = i + 1; j < n; j++) rsum += arr[j]; // If averages of arr[0...i] and // arr[i+1..n-1] are same. To avoid // floating point problems we compare // 'lsum*(n-i+1)' and 'rsum*(i+1)' // instead of 'lsum/(i+1)' and // 'rsum/(n-i+1)' if (lsum * (n - i - 1) == rsum * (i + 1)) { printf('From (%d %d) to (%d %d)n' 0 i i + 1 n - 1); found = true; } } // If no subarrays found if (found == false) cout << 'Subarrays not found' << endl; } // Driver code int main() { int arr[] = {1 5 7 2 0}; int n = sizeof(arr) / sizeof(arr[0]); findSubarrays(arr n); return 0; }
Java // Simple Java program to find subarrays // whose averages are equal public class GFG { // Finding two subarrays // with equal average. static void findSubarrays(int[] arr int n) { boolean found = false; int lsum = 0; for (int i = 0; i < n - 1; i++) { lsum += arr[i]; int rsum = 0; for (int j = i + 1; j < n; j++) rsum += arr[j]; // If averages of arr[0...i] and // arr[i+1..n-1] are same. To avoid // floating point problems we compare // 'lsum*(n-i+1)' and 'rsum*(i+1)' // instead of 'lsum/(i+1)' and // 'rsum/(n-i+1)' if (lsum * (n - i - 1) == rsum * (i + 1)) { System.out.println('From (0 ' + i + ') to (' +(i + 1) + ' ' + (n - 1)+ ')'); found = true; } } // If no subarrays found if (found == false) System.out.println( 'Subarrays not ' + 'found'); } // Driver code static public void main (String[] args) { int[] arr = {1 5 7 2 0}; int n = arr.length; findSubarrays(arr n); } } // This code is contributed by Mukul Singh.
Python 3 # Simple Python 3 program to find subarrays # whose averages are equal # Finding two subarrays with equal average. def findSubarrays(arr n): found = False lsum = 0 for i in range(n - 1): lsum += arr[i] rsum = 0 for j in range(i + 1 n): rsum += arr[j] # If averages of arr[0...i] and # arr[i+1..n-1] are same. To avoid # floating point problems we compare # 'lsum*(n-i+1)' and 'rsum*(i+1)' # instead of 'lsum/(i+1)' and # 'rsum/(n-i+1)' if (lsum * (n - i - 1) == rsum * (i + 1)): print('From' '(' 0 i ')' 'to' '(' i + 1 n - 1 ')') found = True # If no subarrays found if (found == False): print('Subarrays not found') # Driver code if __name__ == '__main__': arr = [1 5 7 2 0] n = len(arr) findSubarrays(arr n) # This code is contributed by ita_c
C# // Simple C# program to find subarrays // whose averages are equal using System; public class GFG { // Finding two subarrays // with equal average. static void findSubarrays(int []arr int n) { bool found = false; int lsum = 0; for (int i = 0; i < n - 1; i++) { lsum += arr[i]; int rsum = 0; for (int j = i + 1; j < n; j++) rsum += arr[j]; // If averages of arr[0...i] and // arr[i+1..n-1] are same. To avoid // floating point problems we compare // 'lsum*(n-i+1)' and 'rsum*(i+1)' // instead of 'lsum/(i+1)' and // 'rsum/(n-i+1)' if (lsum * (n - i - 1) == rsum * (i + 1)) { Console.WriteLine('From ( 0 ' + i + ') to(' + (i + 1) + ' ' + (n - 1) + ')'); found = true; } } // If no subarrays found if (found == false) Console.WriteLine( 'Subarrays not ' + 'found'); } // Driver code static public void Main () { int []arr = {1 5 7 2 0}; int n = arr.Length; findSubarrays(arr n); } } // This code is contributed by anuj_67.
PHP // Simple PHP program to find subarrays // whose averages are equal // Finding two subarrays // with equal average. function findSubarrays( $arr $n) { $found = false; $lsum = 0; for ( $i = 0; $i < $n - 1; $i++) { $lsum += $arr[$i]; $rsum = 0; for ( $j = $i + 1; $j < $n; $j++) $rsum += $arr[$j]; // If averages of arr[0...i] and // arr[i+1..n-1] are same. To avoid // floating point problems we compare // 'lsum*(n-i+1)' and 'rsum*(i+1)' // instead of 'lsum/(i+1)' and 'rsum/(n-i+1)' if ($lsum * ($n - $i - 1) == $rsum * ($i + 1)) { echo 'From ( 0 ' $i' )'. ' to (' $i + 1' ' $n - 1')n'; $found = true; } } // If no subarrays found if ($found == false) echo 'Subarrays not found' ; } // Driver code $arr = array(1 5 7 2 0); $n = count($arr); findSubarrays($arr $n); // This code is contributed by vt_m ?> JavaScript <script> // Simple Javascript program to find subarrays // whose averages are equal // Finding two subarrays // with equal average. function findSubarrays(arrn) { let found = false; let lsum = 0; for (let i = 0; i < n - 1; i++) { lsum += arr[i]; let rsum = 0; for (let j = i + 1; j < n; j++) rsum += arr[j]; // If averages of arr[0...i] and // arr[i+1..n-1] are same. To avoid // floating point problems we compare // 'lsum*(n-i+1)' and 'rsum*(i+1)' // instead of 'lsum/(i+1)' and // 'rsum/(n-i+1)' if (lsum * (n - i - 1) == rsum * (i + 1)) { document.write('From (0 ' + i + ') to (' +(i + 1) + ' ' + (n - 1)+ ')'); found = true; } } // If no subarrays found if (found == false) document.write( 'Subarrays not ' + 'found'); } // Driver code let arr=[1 5 7 2 0]; let n = arr.length; findSubarrays(arr n); // This code is contributed by avanitrachhadiya2155 </script>
Ausgabe
From (0 1) to (2 4)
Zeitkomplexität: O(n2)
Hilfsraum: O(1)
Ein Effiziente Lösung besteht darin, die Summe der Array-Elemente zu ermitteln. Leftsum als Null initialisieren. Führen Sie eine Schleife aus und finden Sie die linke Summe, indem Sie Elemente eines Arrays hinzufügen. Für die Rechtssumme subtrahieren wir die Blattsumme von der Gesamtsumme, ermitteln dann die Rechtssumme und ermitteln den Durchschnitt von Links- und Rechtssumme entsprechend ihrem Index.
relationale Algebra in RDBMS
1) Compute sum of all array elements. Let this sum be 'sum' 2) Initialize leftsum = 0. 3) Run a loop for i=0 to n-1. a) leftsum = leftsum + arr[i] b) rightsum = sum - leftsum c) If average of left and right are same print current index as output.
Nachfolgend finden Sie die Implementierung für den oben genannten Ansatz:
C++// Efficient C++ program for // dividing array to make // average equal #include using namespace std; void findSubarrays(int arr[] int n) { // Find array sum int sum = 0; for (int i = 0; i < n; i++) sum += arr[i]; bool found = false; int lsum = 0; for (int i = 0; i < n - 1; i++) { lsum += arr[i]; int rsum = sum - lsum; // If averages of arr[0...i] // and arr[i+1..n-1] are same. // To avoid floating point problems // we compare 'lsum*(n-i+1)' // and 'rsum*(i+1)' instead of // 'lsum/(i+1)' and 'rsum/(n-i+1)' if (lsum * (n - i - 1) == rsum * (i + 1)) { printf('From (%d %d) to (%d %d)n' 0 i i+1 n-1); found = true; } } // If no subarrays found if (found == false) cout << 'Subarrays not found' << endl; } // Driver code int main() { int arr[] = {1 5 7 2 0}; int n = sizeof(arr) / sizeof(arr[0]); findSubarrays(arr n); return 0; }
Java // Efficient Java program for // dividing array to make // average equal import java.util.*; class GFG { static void findSubarrays(int arr[] int n) { // Find array sum int sum = 0; for (int i = 0; i < n; i++) sum += arr[i]; boolean found = false; int lsum = 0; for (int i = 0; i < n - 1; i++) { lsum += arr[i]; int rsum = sum - lsum; // If averages of arr[0...i] // and arr[i+1..n-1] are same. // To avoid floating point problems // we compare 'lsum*(n-i+1)' // and 'rsum*(i+1)' instead of // 'lsum/(i+1)' and 'rsum/(n-i+1)' if (lsum * (n - i - 1) == rsum * (i + 1)) { System.out.printf('From (%d %d) to (%d %d)n' 0 i i + 1 n - 1); found = true; } } // If no subarrays found if (found == false) System.out.println('Subarrays not found'); } // Driver code static public void main ( String []arg) { int arr[] = {1 5 7 2 0}; int n = arr.length; findSubarrays(arr n); } } // This code is contributed by Princi Singh
Python3 # Efficient Python program for # dividing array to make # average equal def findSubarrays(arr n): # Find array sum sum = 0; for i in range(n): sum += arr[i]; found = False; lsum = 0; for i in range(n - 1): lsum += arr[i]; rsum = sum - lsum; # If averages of arr[0...i] # and arr[i + 1..n - 1] are same. # To avoid floating point problems # we compare 'lsum*(n - i + 1)' # and 'rsum*(i + 1)' instead of # 'lsum / (i + 1)' and 'rsum/(n - i + 1)' if (lsum * (n - i - 1) == rsum * (i + 1)): print('From (%d %d) to (%d %d)n'% (0 i i + 1 n - 1)); found = True; # If no subarrays found if (found == False): print('Subarrays not found'); # Driver code if __name__ == '__main__': arr = [ 1 5 7 2 0 ]; n = len(arr); findSubarrays(arr n); # This code is contributed by Rajput-Ji
C# // Efficient C# program for // dividing array to make // average equal using System; class GFG { static void findSubarrays(int []arr int n) { // Find array sum int sum = 0; for (int i = 0; i < n; i++) sum += arr[i]; bool found = false; int lsum = 0; for (int i = 0; i < n - 1; i++) { lsum += arr[i]; int rsum = sum - lsum; // If averages of arr[0...i] // and arr[i+1..n-1] are same. // To avoid floating point problems // we compare 'lsum*(n-i+1)' // and 'rsum*(i+1)' instead of // 'lsum/(i+1)' and 'rsum/(n-i+1)' if (lsum * (n - i - 1) == rsum * (i + 1)) { Console.Write('From ({0} {1}) to ({2} {3})n' 0 i i + 1 n - 1); found = true; } } // If no subarrays found if (found == false) Console.WriteLine('Subarrays not found'); } // Driver code static public void Main ( String []arg) { int []arr = {1 5 7 2 0}; int n = arr.Length; findSubarrays(arr n); } } // This code is contributed by Rajput-Ji
JavaScript <script> // Efficient Javascript program for // dividing array to make // average equal function findSubarrays(arrn) { // Find array sum let sum = 0; for (let i = 0; i < n; i++) sum += arr[i]; let found = false; let lsum = 0; for (let i = 0; i < n - 1; i++) { lsum += arr[i]; let rsum = sum - lsum; // If averages of arr[0...i] // and arr[i+1..n-1] are same. // To avoid floating point problems // we compare 'lsum*(n-i+1)' // and 'rsum*(i+1)' instead of // 'lsum/(i+1)' and 'rsum/(n-i+1)' if (lsum * (n - i - 1) == rsum * (i + 1)) { document.write( 'From (0 '+i+') to ('+(i+1)+' '+(n-1)+')n' ); found = true; } } // If no subarrays found if (found == false) document.write('Subarrays not found'); } // Driver code let arr=[1 5 7 2 0]; let n = arr.length; findSubarrays(arr n); // This code is contributed by rag2127 </script>
Ausgabe
From (0 1) to (2 4)
Zeitkomplexität: O(n)
Hilfsraum: O(1)
Quiz erstellen