logo

Multiplikation zweier Zahlen mit Schiebeoperator

Für zwei gegebene Zahlen n und m müssen Sie n*m ​​finden, ohne einen Multiplikationsoperator zu verwenden. 
Beispiele:  

Input: n = 25  m = 13 Output: 325 Input: n = 50  m = 16 Output: 800

Methode 1
Dieses Problem können wir mit dem Schichtoperator lösen. Die Idee basiert auf der Tatsache, dass jede Zahl in binärer Form dargestellt werden kann. Und die Multiplikation mit einer Zahl entspricht der Multiplikation mit Zweierpotenzen. Zweierpotenzen können mit dem Linksverschiebungsoperator erhalten werden.
Überprüfen Sie jedes gesetzte Bit in der Binärdarstellung von m und verschieben Sie jedes gesetzte Bit n Mal nach links, zählen Sie dabei, ob der Wert des gesetzten Bits von m eingefügt wird, und addieren Sie diesen Wert, um die Antwort zu erhalten.
 

C++
// CPP program to find multiplication // of two number without use of // multiplication operator #include   using namespace std; // Function for multiplication int multiply(int n int m) {   int ans = 0 count = 0;  while (m)  {  // check for set bit and left   // shift n count times  if (m % 2 == 1)   ans += n << count;  // increment of place value (count)  count++;  m /= 2;  }  return ans; } // Driver code int main() {  int n = 20  m = 13;  cout << multiply(n m);  return 0; } 
Java
// Java program to find multiplication // of two number without use of // multiplication operator class GFG {    // Function for multiplication  static int multiply(int n int m)  {   int ans = 0 count = 0;  while (m > 0)  {  // check for set bit and left   // shift n count times  if (m % 2 == 1)   ans += n << count;    // increment of place   // value (count)  count++;  m /= 2;  }    return ans;  }    // Driver code  public static void main (String[] args)  {  int n = 20 m = 13;    System.out.print( multiply(n m) );  } } // This code is contributed by Anant Agarwal. 
Python3
# python 3 program to find multiplication # of two number without use of # multiplication operator # Function for multiplication def multiply(n m): ans = 0 count = 0 while (m): # check for set bit and left  # shift n count times if (m % 2 == 1): ans += n << count # increment of place value (count) count += 1 m = int(m/2) return ans # Driver code if __name__ == '__main__': n = 20 m = 13 print(multiply(n m)) # This code is contributed by # Ssanjit_Prasad 
C#
// C# program to find multiplication // of two number without use of // multiplication operator using System; class GFG {    // Function for multiplication  static int multiply(int n int m)  {   int ans = 0 count = 0;  while (m > 0)  {  // check for set bit and left   // shift n count times  if (m % 2 == 1)   ans += n << count;    // increment of place   // value (count)  count++;  m /= 2;  }    return ans;  }    // Driver Code  public static void Main ()  {  int n = 20 m = 13;    Console.WriteLine( multiply(n m) );  } } // This code is contributed by vt_m. 
PHP
 // PHP program to find multiplication // of two number without use of // multiplication operator // Function for multiplication function multiply( $n $m) { $ans = 0; $count = 0; while ($m) { // check for set bit and left  // shift n count times if ($m % 2 == 1) $ans += $n << $count; // increment of place value (count) $count++; $m /= 2; } return $ans; } // Driver code $n = 20 ; $m = 13; echo multiply($n $m); // This code is contributed by anuj_67. ?> 
JavaScript
<script> // JavaScript program to find multiplication  // of two number without use of  // multiplication operator  // Function for multiplication  function multiply(n m)  {   let ans = 0 count = 0;   while (m)   {   // check for set bit and left   // shift n count times   if (m % 2 == 1)   ans += n << count;   // increment of place value (count)   count++;   m = Math.floor(m / 2);   }   return ans;  }  // Driver code   let n = 20  m = 13;   document.write(multiply(n m));    // This code is contributed by Surbhi Tyagi. </script> 

Ausgabe
260


Zeitkomplexität: O(logn)



Hilfsraum: O(1)

Methode 2

Wir können den Shift-Operator in Schleifen verwenden.

C++
#include    using namespace std;   int multiply(int n int m){  bool isNegative = false;  if (n < 0 && m < 0) {  n = -n m = -m;  }  if (n < 0) {  n = -n isNegative = true;  }  if (m < 0) {  m = -m isNegative = true;  }   int result = 0;  while (m){  if (m & 1) {  result += n;  }  // multiply a by 2  n = n << 1;  // divide b by 2  m = m >> 1;  }  return (isNegative) ? -result : result; }   int main() {  int n = 20  m = 13;  cout << multiply(n m);  return 0; } 
Java
// Java program for the above approach import java.io.*; class GFG {    public static int multiply(int n int m){  boolean isNegative = false;  if (n < 0 && m < 0) {  n = -n;  m = -m;  }  if (n < 0) {  n = -n;  isNegative = true;  }  if (m < 0) {  m = -m;  isNegative = true;  }  int result = 0;  while (m>0){  if ((m & 1)!=0) {  result += n;  }  // multiply a by 2  n = n << 1;  // divide b by 2  m = m >> 1;  }  return (isNegative) ? -result : result; }  public static void main (String[] args) {  int n = 20  m = 13;  System.out.println(multiply(n m));  } } // This code is contributed by Pushpesh Raj. 
Python3
def multiply(n m): is_negative = False if n < 0 and m < 0: n m = -n -m if n < 0: n is_negative = -n True if m < 0: m is_negative = -m True result = 0 while m: if m & 1: result += n # multiply a by 2 n = n << 1 # divide b by 2 m = m >> 1 return -result if is_negative else result n = 20 m = 13 print(multiply(n m)) 
C#
// C# program for the above approach using System; class GFG {    public static int multiply(int n int m){  bool isNegative = false;  if (n < 0 && m < 0) {  n = -n;  m = -m;  }  if (n < 0) {  n = -n;  isNegative = true;  }  if (m < 0) {  m = -m;  isNegative = true;  }  int result = 0;  while (m>0){  if ((m & 1)!=0) {  result += n;  }  // multiply a by 2  n = n << 1;  // divide b by 2  m = m >> 1;  }  return (isNegative) ? -result : result; }  public static void Main () {  int n = 20  m = 13;  Console.WriteLine(multiply(n m));  } } // This code is contributed by Utkarsh 
JavaScript
function multiply(n m) {  let isNegative = false;  if (n < 0 && m < 0) {  n = -n m = -m;  }  if (n < 0) {  n = -n isNegative = true;  }  if (m < 0) {  m = -m isNegative = true;  }  let result = 0;  while (m) {  if (m & 1) {  result += n;  }  // multiply a by 2  n = n << 1;  // divide b by 2  m = m >> 1;  }  return (isNegative) ? -result : result; } console.log(multiply(20 13)); 

Ausgabe
260

Zeitkomplexität: O(log(m))

Hilfsraum: O(1)

  Related Article:      Russian Peasant (Multiply two numbers using bitwise operators)   
Quiz erstellen